Water Quality Remediation Plan Dish Mill Brook Tributary

BURKE MOUNTAIN RESORT

East Burke, Vermont

Prepared for

Burke Mountain Resort

East Burke, Vermont

Prepared by

VHB Pioneer

7056 U.S. Route 7

North Ferrisburgh, VT 05473

October 16, 2009

Table of Contents

1.0	Introdu	ction	1
	1.1	Background	
	1.2	Water Quality Remediation Plan Overview	
	1.3	Water Quality Remediation Plan Components	
	1.3.		
	1.3.		
	1.3.	3 Watershed Hydrologic Model	4
	1.3.	the september of the september and the september of the s	
	1.3.	O Company of the comp	
2.0	Site Loc	ation and Identified Reach characteristics	5
3.0	Hydrolo	ogic Modeling Analysis	6
	3.1	HydroCAD® Model Development and Results	
	3.2	Simple Method Model Development and Results	
4.0	Watersh	ed Assessments and Biomonitoring	
	4.1	Stream Geomorphic Assessment	10
	4.1.	1 Rapid Habitat Assessment	11
	4.1.		
	4.1.		
	4.2	Bridge and Culvert Assessment	
	4.3	Subwatershed and Outfall Mapping	
	4.4	VTDEC Biomonitoring Data	
5.0	Recomn	nended Remediation Measures	22
	5.1	Stream Geomorphic Assessment Reaches	22
	5.1.		
	5.1.		
	5.1.		25
	5.2	High Priority Culverts	
	5.3	Stormwater Management	
	5.3	On Mountain Improvements	
6.0	Monitor	ing	29
	6.1	Water Quality Monitoring and Parameters	29
	6.1.		
	6.1.		
	6.1.		
	6.1.	4 Cross Sections	32

	6.1	.5 Rainfall	32
7.0	Action	Plan	32
, , ,	11011011		
	7.1	Proposed Hydrologic and Sediment Targets	32
	7.1	.1 Hydrologic Benchmark	33
		.2 Sediment Benchmark	
	7.2	Proposed Water Quality Targets for Biocriteria	33
	7.3	Implementation for Remedial Measures	34
	7.4	Reporting	
	7.5	Conclusions	

1.0 Introduction

This Water Quality Remediation Plan (WQRP) for Dish Mill Brook Tributary has been prepared by VHB Pioneer on behalf of Burke Mountain Resort (Burke). This voluntary plan was initiated by Burke in the context of the Act 250 Master Plan review and request Water Quality Certification to the Vermont Agency of Natural Resources (ANR).

Based on the most recent EPA-approved listing from 2008, Dish Mill Brook and its tributaries are considered to be meeting the State water quality standards and are not included on the 303(d) list of "surface waters in need of TMDL development". However, both Dish Mill Brook (from River Mile 0.0 to 1.3) and the unnamed Tributary originating from the mid-Burke area are included in the 2008 Vermont Part C list of "surface waters in need of further assessment" due to potential impacts to the aquatic life support use of these waters resulting from sedimentation. Therefore, in order to proactively address concerns in this area, Burke 2000 has prepared this Water Quality Remediation Plan, that identifies potential areas of concern, as well as establishes a blueprint for implementation of remedial measures and monitoring of water quality conditions, in order to address these concerns as future resort development moves forward in order to protect the water quality and maintain adequate aquatic habitat for fish and macroinvertebrates.

1.1 Background

Burke 2000, the holding company for Burke Mountain Resort (Burke) has prepared a master plan including conceptual future development plans.

The Vermont Department of Environmental Conservation (VTDEC) has previously collected aquatic biota samples from the Dish Mill Brook Tributary adjacent to the Burke Mountain Access Road (see Site Location Map, page 1 of Appendix 1). The

results of this sampling determined that aquatic biota were in fair condition in 2005, and in good condition 2006. It is Burke's intention to implement protective measures such that the Dish Mill Brook Tributary would reliably attain compliance with Vermont Water Quality Standards aquatic life support criteria, and therefore remain as waterbody in compliance with State water quality standards. This evaluation identifies specific measures which are recommended within the Dish Mill Brook Tributary watershed, some in concert with future development plans, which provide an opportunity for Burke to improve and maintain the water quality of the stream as it flows through the resort property. The primary focus is geared towards reduction of washoff sediment loading and reduction of peak stormwater flow rates from impervious surfaces, through the protective measures proposed in this plan, which would be implemented in concert with future development plans.

1.2 Water Quality Remediation Plan Overview

VHB Pioneer has prepared this WQRP for the Dish Mill Brook Tributary watershed. Field assessments of the Dish Mill Brook Tributary watershed indicate that unmanaged runoff and associated sedimentation from unpaved roads and impervious surfaces are areas where Burke can undertake protective measures to improve the water quality and aquatic habitat of Dish Mill Brook Tributary. Specific elements of this water quality remediation plan (WQRP) include:

- Assessing the existing channel conditions from a geomorphic perspective and assessing Burke's infrastructure with respect to outfalls, bridges, and culverts
- Identifying anthropogenic sediment sources
- Mapping the existing drainage system
- Developing plans targeted towards reduced sediment loads to channels and subsequent effectiveness monitoring

In order to address these elements, VHB Pioneer has completed the following work efforts:

- Rapid geomorphic assessments (RGA) and rapid habitat assessments (RHA)
 on select reaches, cross sections, pebble counts, and a bridge and culvert
 assessment (BCA) within the Dish Mill Brook Tributary watershed
- A watershed and subwatershed field delineation that has been mapped in a geographic information system (GIS)
- Sediment source identification
- A watershed hydrologic model that contains pre-development, existing, and proposed development conditions
- A washoff sediment loading model to quantify the amount of sediment contributed by each subwatershed

1.3 Water Quality Remediation Plan Components

The WQRP is based on several sources of data that include field observations, monitoring data, and modeled output.

1.3.1 Stream Survey and Reconnaissance

The VTDEC Phase II Stream Geomorphic Assessment (VTDEC 2003) was used as an overall guideline for conducting stream reconnaissance. VHB Pioneer conducted RGAs and RHAs along selected reaches during Summer 2007, as well as a BCA. The forms and methods for these assessments were developed by the VTDEC Rivers Management Section. The RGA and RHA allow for an overall assessment of the reach's geomorphic and habitat condition. One cross section per reach was surveyed and one pebble count per reach was conducted. The form developed by VTDEC for BCAs was used. Specific criteria on this form were used to prioritize a culvert's replacement priority rating.

1.3.2 Watershed Delineation and Stormwater Outfall Mapping

VHB Pioneer conducted field reconnaissance during November 2006 to delineate subwatersheds within the Dish Mill Brook Tributary watershed and to identify the existing stormwater outflows. Percent impervious area was also calculated using digital map data and aerial photographs.

1.3.3 Watershed Hydrologic Model

VHB Pioneer has developed a hydrologic model for the Dish Mill Brook Tributary watershed using HydroCAD® v 8.0. The model is based on the Natural Resource Conservation Service (NRCS) unit hydrograph method which incorporates land use conditions through the use of curve numbers and uses travel distances and lag times to route runoff. The subwatersheds in the model were derived directly from the above mentioned subwatershed delineation work. The HydroCAD model enables the simulation of pre-development and proposed development conditions. This allows for peak runoff to be evaluated based on specific changes to watershed conditions. In particular, the model provides a framework to evaluate potential effects on the flow regime based on different stormwater treatment practices and development scenarios.

1.3.4 Simple Method Model - Sediment

The Simple Method model (Scheuler, 1987) is a numerically based model that can be used to predict annual sediment loads. Average annual precipitation, land cover, percent impervious area and drainage area are key inputs into the model. The generated output yields sediment loads in pounds per acre per year (lb/ac/yr). All calculations are made in a Microsoft® Excel spreadsheet. The Simple Method also allows for the modeling of different treatment and development scenarios.

1.3.5 Biomonitoring Data

The VTDEC has sampled benthic macroinvertebrate populations on Dish Mill Brook Tributary 0.1 miles upstream of the confluence with the mainstem Dish Mill Brook.

The data collected from these samples provides information on species, richness, and density, as well as other biometric parameters used to assess a stream's biological health. In addition VTDEC has sampled Dish Mill Brook stations at varying times in the past.

During 2007, VHB Pioneer conducted aquatic biota sampling on the Dish Mill Tributary and two stations on Dish Mill Brook (RM 1.3 and RM 2.1)

2.0 Site Location and Identified Reach Characteristics

Burke Mountain Resort is located in East Burke, Vermont in the northeastern part of the state. The ski trails lie on the north slope of Burke Mountain (see Site Location map, page 1 of Appendix 1).

Dish Mill Brook Tributary is a high gradient stream that flows from approximately 2,350 feet in elevation to 1,080 feet at the confluence with Dish Mill Brook. In the higher terrain, elevation 2,350 to 1,650 feet, Dish Mill Brook Tributary flows through forest areas and ski trails. Below 1,650 feet, Dish Mill Brook Tributary flows adjacent to areas of typical mountain resort development including parking lots, condominiums, roads, and other commercial buildings. Dish Mill Brook Tributary has several branches but is described as one tributary with several reaches for the purpose of the RGA and RHA analyses (see the Bridge and Culvert Assessment and Stormwater Outfalls map in map pocket). The drainage area for the entire Dish Mill Brook Tributary watershed is 1.16 square miles.

The RGA and RHA surveyed six reaches within the Dish Mill Brook Tributary watershed: reaches A, B, C, D, E, and F. Reaches that flow near developed and developing areas were the focus of the assessment. All of the reaches are small high

gradient (SHG) streams, generally possess step-pool or cascade habitat, and are in confined valley settings.

Reach A is a tributary to Reach F and is located east of the Sherburne Base Lodge. The land use within the Reach A subwatershed is forest, roads, and some development. The confluence of Reach E and Reach B is the upstream extent of Reach A. Reach B is the easternmost tributary in the watershed; it flows in a westward direction and crosses Alpine Lane. The upstream extent of reach B is located at the confluence of Reaches C and D both of which cross the Mountain Road in the vicinity of the Mid-Burke Lodge. Land uses in Reaches B and C are ski trails, parking lots, roads, condominiums and forest. Reach E is located downstream of the Willoughby Quad Chair and has some ski trails within its watershed. This reach receives water from several small unnamed tributaries that were not surveyed. The Reach F survey stopped at the confluence of two unnamed tributaries just upslope of the Bunker Hill ski trail. The land use for the unsurveyed tributaries above Reach F is predominantly forest and ski trails as they are located on the western edge of the Burke's ski trail system.

The channels flow through areas dominated by forest composed of deciduous and coniferous species. Hemlock, spruce, and fir are the dominate tree species. Additional species observed include, hobble bush (*Viburnum alnifolium*), striped maple (*Acer pensylvanicum*), red maple (*Acer rubrum*) and birch (*Betula sp.*). The primary existing land uses in this area are ski trails, residential development and forest.

3.0 Hydrologic Modeling Analysis

3.1 HydroCAD® Model Development and Results

VHB Pioneer has completed hydrologic modeling analyses for Dish Mill Brook Tributary for pre-development, existing, and conceptual future development conditions. Modeling has been performed for the Dish Mill Brook Tributary watershed down to the confluence with Dish Mill Brook. The future development scenario is based on Stantec plans from July 19, 2007. The future development scenario includes potential residential and commercial developments that have stormwater runoff detention provided in stormwater basins. Subsequently, the hydrologic modeling for this area is based on the conceptual future development plan recognizing that final design and hydrologic calculations will provide a greater level of specificity than as described in this WQRP.

Under existing conditions, subwatersheds were delineated based on receiving streams and locations of stormwater discharge within the Dish Mill Brook Tributary watershed. Subwatershed summaries are presented in Appendix 2. Subwatersheds were delineated using available topographic mapping, field investigations, and development site plans. Subwatersheds for the future scenario encompass the development and the surrounding existing conditions subwatersheds were modified accordingly.

Two significant inputs to the HydroCAD® model are drainage area characteristics, which includes curve number (CN) runoff coefficient, and time of concentration (Tc). The CN values were determined from the existing land cover types and underlying soil drainage characteristics in the drainage areas using GIS. Land cover was determined using CAD plans from Stantec and soil drainage characteristics were determined using digital NRCS soil surveys. Residential land cover and commercial land cover were used to classify the proposed development under proposed conditions. Forest land cover was used to classify the proposed development area under pre-development conditions. Areas outside of proposed development were

classified according to the existing conditions land cover. Forest and ski trail land cover are prominent in the subwatersheds, with smaller amounts of open and impervious area. The most prominent soil type is Dixfield sandy loam. The majority of soils are classified as having hydrologic soil group *C*, indicating poorly drained soils. The Tc values were measured using the methods presented in Urban Hydrology for Small Watersheds (USDA 1986). The rain events modeled were over 24-hours and include the 1-, 2-, 10-, 25-, and 100-year storms, with rainfall depths determined using the Vermont Stormwater Management Manual (VTDEC 2002) and U.S. Weather Bureau Tech. Paper No. 40 (USDA 1961).

Hydrologic modeling results for the Dish Mill Brook Tributary watershed upstream of the confluence with Dish Mill Brook are provided in Table 1:

Table 1: Peak Discharges by Scenario for Range of Storm Events								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
Pre-Development	1.16	112	129	302	687	966		
Existing	1.16	113	131	304	691	969		
Post-	1.16							
Development		114	131	305	697	975		

The hydrologic modeling results indicate that the post-build out scenario would result in a small increase (1-2 percent) in peak discharge at the downstream extent of Dish Mill Brook Tributary. Based on the sensitivity of the model and the potential error in the input data, the results indicate virtually no change between predevelopment and post development conditions for the 1, 2 and 10 year storms. Existing conditions model results for the 10-year storm are provided in Appendix 2.

3.2 Simple Method Model Development and Results

All subwatersheds that drain to Dish Mill Brook were evaluated using the Simple Method model for calculating pollutant loading, including sediment. The 713 acre Dish Mill Brook Tributary watershed consists mainly of ski trails, open areas, and forest land covers (Impervious surfaces such as buildings, commercial, and residential, as well as paved and gravel roads and parking lots represent 34 acres or 4.8% of the watershed. Currently there are no existing stormwater treatment ponds.

Pollutant loads from eight land use classifications within the Dish Mill Brook
Tributary watershed have been determined using the Simple Method (see
calculations on page 2 of Appendix 1). This method is a widely used and accepted
approach for the estimation of pollutant loads, within a given drainage area. The
method provides a straightforward approach for the comparison of annual pollutant
loading associated with various land uses, and incorporates treatment and
management options. This method can be used to provide estimates of annual
pollutant loads, from which decisions can be made with regard to treatment options
and overall site plan design. This method takes into account several variables
including average annual precipitation (PRISM, 2004), percent impervious land
cover, mean pollutant concentration for a given land use type, contributing drainage
area, and treatment removal rates. The tables on pages 3 through 8 of Appendix 1
provide a summary of pollutant load calculations associated with each drainage area
under existing conditions.

The Simple method model yields results that indicate the wide range of sediment loading conditions within the Dish Mill Brook Tributary watershed. The range of sediment loading ranges from a low of 22 lb/ac/yr in subwatershed A46 to a high of 919 lb/ac/yr in subwatershed A08. While the overall average loading for the entire watershed is 42 lb/ac/yr suggests that sediment loading is relatively low, because it is an average, doesn't represent the magnitude of sediment washoff load from the

largest sediment producing subwatersheds. Of the eight subwatersheds that have the largest annual unitized sediment loads, VHB Pioneer has identified seven of them as critical subwatersheds (Table 2).

Table 2: Eigh	Table 2: Eight Largest Unitized Annual Sediment Loading Subwatersheds Within									
Dish Mill Brook Tributary										
Sub- watershed	Percent Impervious Area	Critical Subwatershed								
A03	481	Transportation - gravel	45%	Yes						
A08	919	Transportation - gravel	55%	Yes						
A10	227	Transportation - gravel	18%	No						
A13	270	Transportation - gravel	31%	Yes						
A29	327	Transportation - gravel	30%	Yes						
A30	549	Transportation - gravel	40%	Yes						
A35	227	Transportation - paved	43%	Yes						
A42	243	Transportation - paved	44%	Yes						

Gravel roads and parking areas were identified as the largest producers of sediment within these subwatersheds. A total of 15.9 acres of these unpaved roads lies within the Dish Mill Brook Tributary watershed that currently generate an estimated 10,000 pounds of sediment per year.

4.0 Watershed Assessments and Biomonitoring

4.1 Stream Geomorphic Assessment

SGA data that were collected included a partial SGAas defined by the VTDEC for official Phase 2 Stream Geomorphic Assessment (SGA) projects. Nevertheless, VHB Pioneer used the SGA protocol as a general guideline to collect the data and to ensure the integrity of the data.

With rapid habitat assessments (RHA) and rapid geomorphic assessments (RGA) performed on six channel reaches, streams were assessed in terms of their overall condition. The RHA was conducted using the parameters that are appropriate for high gradient streams and the RGA was conducted using the parameters for confined streams, as the valley width was generally less than four times the bankfull width. Cross sections were surveyed and channel dimensions were determined. A level tape and measuring rod were used for these measurements. Pebble counts were also collected at each cross section location. The forms that were used were developed by the VTDEC from the "Vermont Stream Geomorphic Assessment Appendix A – Phase 2 Field Forms" (VTDEC 2003). Data from the original field forms are available upon request pending permission from Burke.

The quality assurance and quality control measures developed for the SGA and BCA (see Section 4.2) are provided on pages 9 through 12 of Appendix 1.

4.1.1 Rapid Habitat Assessment

With respect to the overall habitat condition, five out of six surveyed reaches had scores under 0.64, which suggests that the overall habitat condition is deemed as fair. Reach E was the exception in the survey and the data suggest that the reach is in overall good condition almost attaining reference condition.

Two habitat criteria that were further examined were sedimentation and bed composition. These parameters are important to consider in the context of future mountain project developments. Five of the six surveyed reaches were observed to have poor or fair embeddedness whereby at least 50 percent of gravel and larger size particles were surrounded by fine sediment. Only reach E was in reference condition, with 0 to 25 percent of the bed embedded with fine grain material (see Stream Geomorphic and Habitat Assessment map in map pocket). As for the sediment deposition parameter, half of the surveyed channels were observed as being in fair condition and the other half being in good condition as shown on the

above-referenced map. Reaches in good condition have some new increase in bar formation and have slight deposition in pools. Reaches in fair condition have moderate amounts of new deposition and have 30 to 50 percent of the channel bed affected.

In terms of the amount of channel alteration, five out of six of the reaches were assessed as good or reference, which suggests that the surveyed reaches had minimal straightening, berms, or streambank altering. Only Reach D was determined as fair, suggesting 20 to 80 percent of the reach had been channelized. The riffle/step frequency also had five out of six reaches being determined as good or reference conditions, with reach F being deemed as only in fair condition.

All surveyed streams were considered to have a fair condition for bank stability and bank vegetative protection. Slightly worse conditions were observed for vegetative zone width, with reach C and D considered poor on the left bank, and only reach D was observed as being in poor condition on the right bank. Table 3 provides a summary of RHA and RGA data collected on the six survey stream reaches.

Table 3: Summary of Rapid Habitat Assessment and Rapid Geomorphic Assessment Data									
Reach A Reach B Reach C Reach D Reach E Reach F									
Rapid Habitat Assessment									
Epifaunal Substrate	Good	Poor	Fair	Reference	Good	Good			
Embeddedness	Fair	Poor	Poor	Fair	Reference	Fair			
Velocity/Depth Patterns	Fair	Fair	Fair	Good	Reference	Fair			
Sediment Deposition	Fair	Fair	Fair	Good	Good	Good			
Channel Flow Status	Fair	Fair	Good	Good	Good	Good			
Channel Alteration	Reference	Reference	Good	Fair	Reference	Reference			
Riffle/Step Frequency	Good	Reference	Good	Good	Reference	Fair			
Bank Stability (L)	Fair	Fair	Fair	Fair	Fair	Fair			
Bank Stability (R)	Fair	Fair	Fair	Fair	Fair	Fair			
Bank Vegetative Protection (L)	Fair	Fair	Fair	Fair	Fair	Fair			

Table 3: Summary of Rapid Habitat Assessment and Rapid Geomorphic Assessment Data									
Reach A Reach B Reach C Reach D Reach E Reach F									
Bank Vegetative Protection (R)	Fair	Fair	Fair	Fair	Fair	Fair			
Riparian Vegetative Zone Width (L)	Fair	Fair	Poor	Poor	Fair	Fair			
Riparian Vegetative Zone Width (R)	Fair	Fair	Fair	Poor	Fair	Fair			
Habitat Condition Score	0.63	0.54	0.52	0.62	0.81	0.61			
Rapid Geomorphic Assessment									
Channel Degradation	Poor	Poor	Poor	Poor	Good	Good			
Channel Aggradation	Fair	Fair	Poor	Good	Reference	Poor			
Widening Channel	Fair	Good	Fair	Fair	Reference	Good			
Change in Planform	Good	Good	Good	Good	Good	Fair			
Geomorphic Condition Score	0.40	0.48	0.39	0.50	0.75	0.45			

4.1.2 Rapid Geomorphic Assessment

In a few locations the proximity of roads, ski trails, and homes reduces the width of the riparian buffer. Floodplain access is generally very limited resulting in channel incision. Some bank erosion was noted but the majority of the banks are stable. A significant amount of sedimentation resulting in elevated embeddedness (greater than 50 percent) was observed throughout the watershed. The increased sediment load has resulted in significant aggradation in much of the channel resulting in isolated avulsions and steep riffles as well as channel widening. The channel widening appears to be having a minimal effect on bank stability, but continued sedimentation may intensify this process.

The results for the RGA were mixed, with each reach receiving a fair, poor, and good score, with the exception of reach E, which did have the highest overall geomorphic condition score at 0.75, thereby placing it in good condition. The other five reaches had geomorphic condition scores between 0.35 and 0.64, classifying them in fair condition.

The Stream Geomorphic and Habitat Assessment map depict four of the six reaches as being in poor condition with respect to the channel degradation parameter (see map pocket). This condition is automatically obtained if multiple head cuts are present or if the incision ratio is greater than 2. Reference E and F were observed to be in good condition for this parameter.

Two reaches (C and F) were considered in poor condition when considering channel aggradation. This condition can occur when step-pool features are filled with sediment. These reaches can also have high width to depth ratios and can have experienced major changes to their hydrology. The aggradation is likely due to sand and gravel washoff from nearby roads.

Reaches B and F were observed as being in good condition in terms of channel widening, and reach E was in a reference condition in terms of widening as displayed on the Stream Geomorphic and Habitat Assessment map (see map pocket). These results suggest that bank erosion and scour are relatively low, and bar deposits are not overwhelming the channel. The three remaining reaches, A, C, and D were in fair condition, which suggests a somewhat higher width to depth ratio (between 30 and 40) and some mid-channel and/or diagonal bars are more abundant.

Finally, all the reaches except for F were in good condition for the channel planform parameter. Given the relative steepness of these streams, it is not unexpected that these channels have not made substantial lateral migrations. Reach F was in poor condition, specifically in terms of man-made constrictions significantly smaller than bankfull width, which in turn has caused extensive deposition and flow bifurcation.

4.1.3 Cross Sections and Pebble Counts

Cross Sections

Along each reach, a cross section was surveyed using best professional judgment to locate a site representative of the stream reach. Given the length of the reaches surveyed and the variability observed within a reach, each cross section is representative of the typical condition of the entire reach. The cross section data were used to determine channel dimensions such as width and depth as well as to determine ratios such as width to depth and entrenchment. Graphical presentations of the cross sections are shown on pages 13 and 14 of Appendix 1.

Table 4 provides a summary of the channel dimensions for each of the surveyed cross section within the reach. Low entrenchment values suggest that the channel has steep banks; higher entrenchment values suggest that peak flows have the ability to spread out onto a wider surface.

	Table 4: Dish Mill Brook Tributary Channel Parameters								
Reach	Bankfull Width (feet)	Mean Bankfull Depth (feet)	W/D	Entrenchment	Dominant Material				
A	7.2	1.0	7.2	1.9	Coarse Gravel				
В	14.3	0.7	20.4	1.3	Fine Gravel				
С	9.5	0.9	9.5	2.0	Fine Gravel				
D	6.6	0.8	7.3	2.0	Fine Gravel				
Е	8.0	1.1	6.1	1.6	Coarse Gravel				
F	11.6	0.7	16.6	1.9	Fine Gravel				

Pebble Counts

The pebble counts that were conducted grouped the particles into five categories; sand, fine gravel, coarse gravel, cobble, and boulder. The sampled data suggest Reaches A and E have a median grain size that is coarse gravel (see Figure 1). For reaches B, C, D and F, at least 50 percent of their sampled grains were less than 16mm, which is considered fine gravel. The level of fine material indicates that sediment is above levels that are considered healthy for aquatic life in reached B, C, D and F.

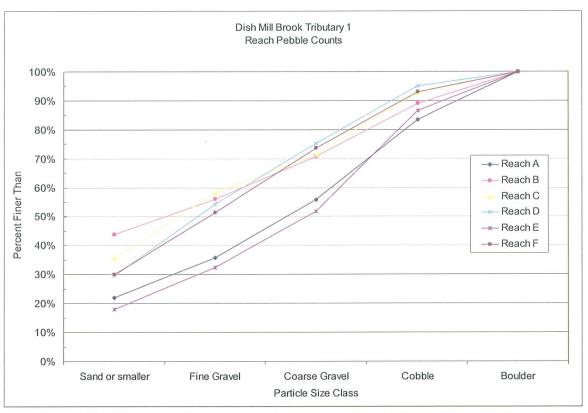


Figure 1. Particle size distribution for sampled reaches within the Dish Mill Brook Tributary.

4.2 Bridge and Culvert Assessment

VHB Pioneer conducted a BCA on twenty-five culverts and three bridges in May 2007. The locations of these structures are displayed on the Bridge and Culvert Assessment and Stormwater Outfalls map provided in the map pocket.

Bridges 01 and 02 appear to be constructed from logs and appear to be crossings for historic roads no longer in use. Both bridges have a structure span that is narrower than the channel width. Nevertheless, neither of these bridges, nor bridge 03 appears to be responsible for creating any problems with respect to water quality.

Based on the VTDEC BCA form, the criteria used to assess the culverts for replacement include the following parameters:

- 1. Upstream sediment obstruction
- 2. Two foot or greater outflow drop
- 3. Downstream banks substantially higher than upstream banks
- 4. High bank erosion on the downstream side

Culvert replacement was categorized as high if two or more of these conditions were observed.

The BCA identified five culverts that were obstructed on the upstream end by sediment. Five culverts were identified that had a two foot drop on the downstream end, and one with a six foot drop on the downstream end. Four culverts were identified as having downstream banks that were substantially higher than the upstream bank heights. Three culverts were observed as having high bank erosion (see Table 5).

	Table 5: Bridge and Culvert Assessment Summary and Replacement Priority Ranking									
Culvert		Geomorphic	and Fish Data Passage I	Parameter		Culvert				
ID	Upstream Sediment Obstruction	2ft. or Greater Outflow Drop	Downstream Banks Substantially Higher Than Upstream Banks	High Downstream Bank Erosion	Burke Mtn. Owned?	Replacement Priority				
C-01					No	None				
C-02			✓		Yes	Low				
C-03					No	High				
C-04	✓				Yes	Moderate				
C-05			✓		No	Low				
C-06					Yes	None				
C-07		\square		✓	Yes	High				
C-08	☑				No	Moderate				
C-09					No	None				
C-10					No	None				
C-11					No	None				
C-12					No	None				
C-13					No	None				
C-14					No	None				

	Table 5: Bridge and Culvert Assessment Summary and Replacement Priority Ranking									
Culvert		Geomorphic	c and Fish Data Passage l	Parameter		Culvert				
ID	Upstream Sediment Obstruction	2ft. or Greater Outflow Drop	Downstream Banks Substantially Higher Than Upstream Banks	High Downstream Bank Erosion	Burke Mtn. Owned?	Replacement Priority				
C-15					Yes	None				
C-16		☑)	Yes	Moderate				
C-17					Yes	None				
C-18					Yes	None				
C-19					Yes	High				
C-20	\square				Yes	High				
C-21					Yes	None				
C-22				Yes	Moderate					
C-23	Yes				None					
C-24			☑		Yes	Low				
C-25		☑			Yes	Moderate				

4.3 Subwatershed and Outfall Mapping

VHB Pioneer conducted field investigations of the property on November 9 and 10, 2006 in order to inventory stormwater outfalls and map their associated drainage areas. The outfall mapping process was similar to the method developed for mapping stormwater outfalls in stormwater impaired watersheds for VTDEC.

VHB Pioneer's assessment of the stormwater outfalls identified fourteen outfalls as critical due to erosion concerns (Table 6). Ten open channels and four closed pipes showed evidence of excessive sediment transport or erosion, one of which was plugged (see the Bridge and Culvert Assessment map in map pocket). Evidence of excessive sediment loading was noted by VHB Pioneer in the waterways at these sites, and can be observed in the photographs of these sites (pages 15 through 21 of Appendix 1). Seven outfalls were identified as draining areas with high impervious cover (see Table 6).

	Table 6: Critical Outfalls								
Outfall	Associated Subwatershed(s)	Sediment and/or Erosion	> 25 % Impervious						
OC-004	A49	X	X						
OC-005	A49	X	Χ						
OC-006	A49	X	X						
OC-008	A29		X						
OC-009	A31, A36	Х							
OC-203	A08	Х							
OC-208	A23	X							
OC-209	A23	Х							
OC-210	A23	X							
OC-211	A23	X							
CP-001	A34	X	X						
CP-002	A33		X						
CP203	A10	Х	X						
CP-207	A15,A43	X Culvert Plugged							

The drainage pattern and impervious surfaces within the target watershed also play a critical role in understanding the movement of sediment through the target watershed. In order to better define and quantify high priority areas within the target watershed, VHB Pioneer delineated 51 subwatersheds and calculated their percent impervious cover.

The subwatershed delineation and percent impervious cover mapping illustrate some notable areas at Burke Mountain, primarily critical subwatersheds which were identified as having more than 25 percent impervious cover (Table 7).

Table 7: Critical Subwatersheds							
Subwatershed	Total Area (Acres)	Percent Impervious					
A03	1.4	44.5					
A08*	0.8	55.0					
A13	1.5	31.3					
A29*	0.7	29.6					
A30	2.3	40.3					
A32	0.9	38.1					
A33*	1.1	31.9					
A35	2.1	42.9					
A42	1.2	43.7					
A49*	0.9	33.5					
*Subwatershed contains at least or ^Duplicate photographs (see page		ix 1)					

In addition to the high percentage of impervious surface, these subwatersheds were also identified and photographed in the field as problem areas. The Bridge and Culvert Assessment and Stormwater Outfalls map in the map pocket displays critical watersheds. Photographs of four of these subwatersheds are on pages 22 and 23 of Appendix 1.

Subwatershed A03 is adjacent to Mountain Road, and subwatersheds A08, A13 and A42 are clustered around the Sherburne Base lodge upslope of Meadow Road. The remaining critical subwatersheds are clustered around the Mid-Burke lodge and parking lot. Four of the critical subwatersheds (A08, A29, A33 and A49) have a critical outfall located within their boundary.

4.4 VTDEC Biomonitoring Data

VTDEC has conducted biomonitoring sampling along Dish Mill Brook Tributary 0.1 miles upstream from the confluence with Dish Mill Brook in 1988, 2005, and 2006. VHB Pioneer also sampled this location in 2007. The 2006 sample met the VTDEC biocriteria for all eight biometrics and consequently the overall biologic community was listed as being in good condition (Table 8).

,	Table 8: Dish Mill Brook Tributary - River Mile 0.1 kick net sampling results									
Year	Densitya	Richnessb	EPT ^c	PMA- Od	BIe	% Oligo.f	EPT/ EPT+C ^g	PPCS- FG ^h	Outcome	
Class B2-31	≥300	≥27	≥16	≥45	≤4.5	≤12	≥0.45	0.4		
1988	200	35.5	18	70.5	2.6	7.2	0.7	0.5	Fail	
2005	121.5	28	14.5	76.6	2.7	1.6	1.0	0.7	Fail	
2006	602.9	40	20	69.9	3.8	2.0	0.9	0.5	Pass	
2007*	138.5	31.5	19.5	87.6	1.91	4.0	0.95	0.71	Fail	

- ¹VANR macroinvertebrate thresholds (2/12/02)
- a) Density is the relative abundance of animals in a sample.
- b) Richness is the number of species in a sample unit.
- c) EPT is the number of species in the environmentally sensitive orders Ephemeroptera, Plecoptera, and Trichoptera.
- d) Percent Model Affinity of Orders is a measure of order-level similarity to a model based on reference streams.
- e) Hilsenoff Biotic Index is a measure of the macroinvertebrate assemblage tolerance toward organic enrichment
- f) Percent Oligochaeta is a measure of the percentage of the community made up of this order
- g) A measure of the ratio of the intolerant EPT orders to the generally tolerant Diptera family Chironomidae
- h) Pinkham-Pearson Coefficient of Similarity Functional Groups is a measure of functional feeding group similarity to a model based on reference streams.

Data collected by Steve Fiske of Vermont VTDEC

*Preliminary Data collect by C. Szal, finalization pending review by S. Fiske.

Bold denotes metric does not meet Class B2-3 Criteria

The 1988 samples did not meet the standard for density and the 2005 samples did not meet the standard for density or EPT. Failure to meet these standards resulted in the 1988 and 2005 sampling efforts classifying the overall aquatic macroinvertebrate community as being in fair condition. Subsequent sampling by VTDEC in 2006

determined that all eight criteria were met. As part of the 2006 sampling, it was noted that embeddedness in the channel was high and that sediment from gravel roads and parking lots appeared to be delivering sand to the channel.

Catherine Szal, Biologist, conducted kick net samples on October 1, 2007. Sampling was conducted on Dish Mill Brook stations 1.3 and 2.1 which both passed B2-3 criteria (See pages 27 through 29 of Attachment 1). The Dish Mill Brook Tributary station 0.1 kick net sample occurred upstream of the Mountain Road and below the confluence of Reach A and Reach F. The results from the latest sample round indicate that seven of eight metrics passed with only density failing to meet B2-3 criteria. This continues a trend of high variability with respect to densities for the Dish Mill Brook Tributary.

5.0 Recommended Remediation Measures

5.1 Stream Geomorphic Assessment Reaches

5.1.1 Reach B

As mentioned, reach B was in poor condition for embeddedness and channel degradation. Critical outlets OC-208, OC-209, OC-210 and OC-211 lie in a series along a gravel road and all contribute directly to reach B, which provides supporting evidence for the reach having a poor embeddedness and channel degradation condition. Numerous sand and gravel deposits were observed in the channel, which also suggests that the road is a significant source of sediment. The stormwater runoff on gravel road should be routed so that gullies do not form on the road. This means that flow lengths must be limited and outlets should be treated to reduce the amount of sediment being supplied to the channel.

5.1.2 Reaches C and D

Together, Reaches C and D flow through six critical subwatersheds (A29, A30, A32, A33, A35, and A49) with impervious cover exceeding 25 percent. A great deal of the impervious area is from the Mid-Burke lodge parking lot and surrounding development. With the exception of Mountain Road, all other roads are gravel. The water quality impacts to these channels are generally believed to come from increased runoff from the untreated impervious areas and from sediment coming from unpaved roads.

The RGA suggests that the channels continue to adjust to the increased sediment loads and increased peak flows. The channels are being affected by side channel sediment deposits and have evidence of incision as well. The channels are likely to continue to be impacted until the sediment load and peak flows are reduced. Unpaved roads should be managed so that sediment generated from these roads is minimized and that the sediment that is generated is directed to areas that will not directly contribute to the channel. The proper placement of roadside ditches and water bars can significantly reduce sediment being directly contributed to Reaches C and D.

Reach C flows past the Mid-Burke Lodge on the eastern edge of the parking lot. The riparian zone in this area is minimal. Lacking a sufficient buffer, road-related sediment and untreated peak flows are directed towards this reach. The development of a planting plan to filter the runoff and sediment is recommended.

The potential for channel restoration exists on Reach D upstream of the confluence with Reach C. The riparian vegetation in this area is limited to mowed grass. Cobbles are located near the channel but serve no functional purpose as they are well outside the bankfull dimensions (Figure 2). The removal of the cobbles coupled

with a riparian planting plan would improve the structure and function of the channel.

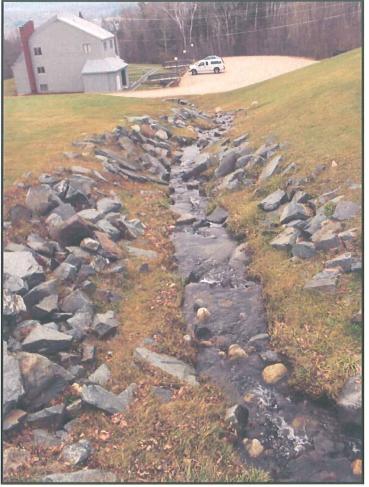


Figure 2. Photograph of reach B looking downstream, upstream of a condominium development.

Proposed developments are located in the subwatersheds that contribute to Reaches C & D. Burke should develop best management practices (BMPs) to prevent increased levels of sediment and water being discharged due to construction related stormwater discharges.

5.1.3 Reach F

Critical subwatershed A08 and A13 contribute to the lower section of Reach F. The Sherburne Base lodge and its parking lot comprise much of the impervious area in these subwatersheds. Minimal buffers exist along a 200 foot stretch where the channel flows near some condominiums and a parking lot. As with reach C, a planting plan to increase the riparian buffer width is recommended.

5.2 High Priority Culverts

Upon inspection of these parameters in Table 5 (Section 4.2), culvert C-20 is checked for three parameters; culverts C-03, C-07, and C-19 are checked for two parameters. Burke should consider culverts C-03, C-07, C19 and C20 as high priority culverts to be replaced, adequately sized, and properly laid to grade during installation. (Photographs of each culvert are provided on pages 24 and 25 of Appendix 1).

Culverts with the next highest priority should be C-04 and C-08 due to sediment obstructing the flow of water at the inlet, and culverts C-16, C-22, and C-25 should also be considered for replacement due to having a two foot free fall drop. While culverts C-02, C05, and C-24 were identified as having downstream banks substantially higher than the upstream banks, these are considered low priority replacements.

Properly sized and placed culverts are designed to efficiently convey water and sediment without creating additional erosion, which is intended to improve water quality.

5.3 Stormwater Management

Existing stormwater management at Burke is minimal, as the existing impervious surfaces were constructed prior to the institution of operational phase stormwater management requirements by VTDEC. Existing impervious area associated with the mountain and adjacent land areas is managed for peak flow attenuation or pollutant

removal (primarily sediment). In some areas where there is an absence of proper management of stormwater runoff, extensive rills and gullies have formed, resulting in excessive outwash and accumulation of sediment (primarily fine grained material) in receiving waters.

Based on results from the sediment loading analysis, ten subwatersheds have been identified as predominant contributors of unmanaged runoff and washoff sediment load to receiving waters (Table 2). The two primary areas where a stormwater management system designed towards peak flow attenuation and sediment reduction would provide substantial benefits are the subwatersheds in and around the Sherburne Lodge (subwatershed A08, A13 and A42) and the Mid-Burke Lodge (subwatersheds A29, A30, A31, A32, A33, A35 and A49). The three watersheds associated with the Sherburne Lodge have a total area of 3.5 acres, 2.0 acres of which are impervious; the seven subwatersheds associated with the Mid-Burke lodge have a total area of 10.1 acres, 3.7 acres of which are impervious.

Where appropriate, management strategies may involve retrofitting existing developed areas with stormwater management systems, such as stone-lined swales and/or stormwater basins. In addition, both the Sherburne Lodge and Mid-Burke areas are slated for future re-development, which would result in conformance with applicable criteria of the Vermont Stormwater Management Manual (VSWMM) for water quality and quantity. The re-development of these areas with appropriate stormwater controls, and issuance of operational phase discharge permits from VTDEC with ongoing operation and maintenance requirements is a key aspect to addressing existing impacts due uncontrolled stormwater runoff in the watershed.

Specific assessment of proposed retrofit measures and future development proposals within the watershed should be made to ensure that the proposed hydrologic and sediment load targets, as described in Section 7.1, would be met.

5.3 On Mountain Improvements

The results from the Simple Method sediment analysis and field investigation indicate that the existing road system plays a large role in contributing sediment to channels. Field observations of the critical outfalls lead to a similar conclusion. As such, treatments idetnified in Table 9 are designed towards reducing sediment loads in Dish Mill Brook Tributary. These treatments were identified in 2007 and the table has been updated to include the current status.

	Table 9: Critical Outfall Summary and Treatment					
Outfall	Comment	Treatment Recommendation (2007)	Status (2009)			
OC-004 OC-005 OC-006	Associated with dirt parking area nearby the maintenance building. Presently runoff from the parking lot is flowing directly into the nearby stream.	Interim treatment - Divert flow from entering the brook through the use of berms or swales and direct to the roadside ditches. Final treatment - Install SW detention BMP to temporarily detain flow and prevent sediment from reaching the stream.	Interim Treatment has been implemented. storage area and stream. Final Treatment - will be implemented as Mid-Burke is developed			
OC-008	Associated with a gravel/paved parking area runoff draining to the stream untreated.	Direct runoff through a shallow ditch upslope of stream entry	Treatment pending			
OC-009	Associated with a gravel/paved parking area with untreated runoff directly entering the stream	Interim treatment - Divert runoff from directly entering the stream through ditching. Final treatment - Install SW treatment BMP to detain flow and prevent sediment from reaching stream	Interim Treatment has been implemented In addition, concrete barriers have been installed to provide a 20' buffer between snow storage area and stream. Final Treatment – will be implemented as Mid-Burke is developed			
OC-203	Associated with the condominium development with untreated runoff directly entering the stream. The outfall itself is eroding and adding to the sediment problem	Interim treatment - Stabilize the outfall with large stones and regrading. Final Treatment - Direct runoff away from the stream through the installation of parking lot drainage network and stormwater detention	<u>Final Treatment</u> – will be implemented as Mid- Burke is developed			

	Table 9: Critical Outfall Summary and Treatment					
Outfall	Comment	Treatment Recommendation (2007)	Status (2009)			
OC-208 OC-209 OC-210 OC-211	Direct runoff occurs from a gravel road directly into the stream. Runoff is causing bank erosion	Regrade the road to drain into the drainage ditch on the opposite side of the road. Restore bank stability in eroded areas.	Treatment has been implemented. In addition, sediment has been removned from the drainage ditch.			
CP-001	New culvert installations with invert and outlet. Channel upgrades needed.	Install culvert aprons at invert and outlet, regrade slope above outlet to match existing grade, restore the stream channel below the outlet. Plant vegetation	Apron installed, regrading channel and vegetation planting is still pending.			
CP-002	New culvert installations with invert and outlet. Channel upgrades needed.	Install culvert aprons at invert and outlet, regrade slope above outlet to match existing grade, restore the stream channel below the outlet. Plant vegetation	Apron installed, regrading channel and vegetation planting is still pending.			
CP-203 CP-207	Excess sediment buildup	Remove excess sediment. Monitor sediment accumulation and periodically remove buildup of sediment	Treatment has been implemented. In addition, the road was regarded to direct runoff to the open channel, regrading the channel and removal of excess sediment.			

In addition to the outfall treatments listed in Table 9 above, the following activities were completed (location of improvements is shown on the attached map):

- During the summer of 2009 drainage improvements, including stone lining the lateral drainage ditch, removal of excess sediment buildup, and installation of new drainage culverts and plunge pools, on High meadow road, in the vicinity of subwatersheds A21, A22, A25.
- Sherburne Lodge Road was repaved for a 1000 foot stretch from the intersection of Mountain Road toward the lodge. Drainage improvements including lateral ditches and culverts were also installed.

6.0 Monitoring

VHB Pioneer has prepared a a water quality sampling program that would be implemented as specific phases of future Master Plan development are initiated. Current information gleaned from water quality sampling done in 2007 and earlier provides adequate baseline data. The monitoring effort proposed here would be implemented in concert with master plan development. Such a monitoring effort would record the stream response to protection efforts, and enable continued assessment of areas of concern within the watershed.

The monitoring that is presented in this report presents a recommended schedule for the first year of sampling. The monitoring plan can and should be modified annually based on monitoring results and site-specific developments

6.1 Water Quality Monitoring and Parameters

The water quality monitoring study would consist of the following components:

- Water chemistry
- Aquatic biota
- Sediment
- Cross sections
- Rainfall

VHB Pioneer recommends water quality monitoring at stations located throughout the Dish Mill Brook Tributary watershed (see Water Quality Monitoring Station Locations map on page 26 of Appendix 1). The 2008 monitoring schedule is summarized in Table 10.

Table 10: Water Quality Monitoring Schedule

Monitoring activity	Station*	Frequency		
Water Chemistry	A1, B1, C1, C2, D1, E1, F1	One Summer (July - Aug.)		
(baseflow)		One Fall (Sept Oct)		
(buscilow)		2 rounds annually		
	A1, B1, C1, C2, D1, E1, F1	One Spring (April - May)		
Water Chemistry		One Summer (July - Aug.)		
(event-based)		One Fall (Sept Oct)		
,		2 - 3 rounds annually		
C 1'	A1, B1, C1, D1, E1, F1,	Once annually:		
Sediment		(September – October)		
C. C. Li	A1, B1, C1, C2, D1, D2, E1,	Once annually:		
Cross Sections	F1, F2	(September - October)		
D-1-(-1)	Mid Broden Ladan	Continuous:		
Rainfall	Mid-Burke Lodge	March 31 - October 31		
*The prefix is a reference to the reach on which the station lies.				

Each of the sampling stations is described below.

- A1: Reach A Dish Mill Brook Tributary upstream of Dish Mill Brook confluence
- B1: Reach B Dish Mill Brook Tributary upstream of Reach E
- C1: Reach C Dish Mill Brook Tributary upstream of Reach D
- C2: Reach C Dish Mill Brook Tributary upstream of the Mid-Burke Lodge Parking

 Lot
- D1: Reach D Dish Mill Brook Tributary upstream of Reach C
- D2: Reach D Dish Mill Brook Tributary above the Mid-Burke Lodge
- E1: Reach E Dish Mill Brook Tributary upstream of Reach A
- F1: Reach F Dish Mill Brook Tributary upstream of Reach A
- F2: Reach F Dish Mill Brook Tributary on the western tributary above ski trails

6.1.1 Water Chemistry

Sampling is recommended to occur during baseflow and following significant rainfall events. Baseflow sampling would be conducted during a period when no rain or significant snowmelt event has been recorded for 24 to 48 hours prior to sampling. Event-based sampling would be conducted during rainfall (a rainfall

event resulting in 0.5 inches of rain in a 24 hour period) or snow melt events which generate runoff. Baseflow, storm or melt off event-flow (parematers marked with an asterisk (*))and sediment sampling would occur at all the stations (see Table 10). Monitoring parameters for water chemistry sampling would include:

- pH (s.u.)*
- chloride (mg/L)
- total phosphorus (mg/L)
- total dissolved phosphorus (mg/L)
- alkalinity, as CaCO₃ (mg/L)
- turbidity (NTU)*
- total suspended solids (TSS) (mg/L)*
- conductivity (μmho)*
- temperature (°C)*

6.1.2 Aquatic Biota

Conducting annual aquatic biota sampling at station A1 using VTDEC protocols would provide a consistent and long term indication of the success achieved through the implementation of remedial measures to ensure reliable attainment of biocriteria established pursuant to the Vermont Water Quality Standards.

6.1.3 Sediment

Because sediment loading to the channels is an important concern, pebble counts are proposed at several water quality monitoring stations. The pebble counts provide information on size of channel bed and bar deposits and the degree to which bed material is embedded. The protocol calls for three rounds of 100 sampled particles be conducted at each monitoring site.

6.1.4 Cross Sections

The available data and observations of the reaches within the Dish Mill Brook
Tributary watershed suggest that the channels are receiving elevated levels of
sediment. Given the dynamic nature of mountain streams and that they are
considered transport reaches, cross sections should be surveyed on an annual basis.
One cross section at each of the water chemistry sampling stations would provide
valuable information in terms of whether the channel is responding to the proposed
remediation measures or not. The cross sections should be benchmarked and well
identified in the field in order to ensure that surveys can take place on annual basis.
Consequently, a channel slope measurement should be made at this location for
hydraulic modeling purposes.

6.1.5 Rainfall

Burke should install an automatic rain gage that is not influenced by canopy cover. It should be located near the Mid-Burke lodge in the vicinity of 1,600 feet above sea level. A rain tipping bucket attached to a data logger should be installed that measures rainfall at 0.01 inch increments, which allows for determination of storm event, daily and monthly rainfall totals.

7.0 Action Plan

7.1 Proposed Hydrologic and Sediment Targets

The hydrologic and sediment targets are goals towards which Burke should be working. These goals can serve as benchmarks for the planning of future development.

7.1.1 Hydrologic Benchmark

The 2006 biomonitoring data for Dish Mill Brook Tributary suggest that the hydrologic regime is capable of supporting a healthy macroinvertebrate population. Several remediation measures have been recommended to reduce sediment to the channel network. As mentioned previously, all future developments will need to meet applicable criteria of the VSWMM. For the purposes of this remediation plan, the proposed hydrologic targets for future development are the peak flows in existing condition model in HydroCAD for the 2-year and 10-year storm events at the Dish Mill Brook Tributary confluence with the mainstem Dish Mill Brook. Such a target, coupled with sediment reduction measures should allow Dish Mill Brook Tributary at the biomonitoring station to maintain a healthy aquatic population.

7.1.2 Sediment Benchmark

Recommended sediment benchmarks, geared towards specific areas within the Dish Mill Brook Tributary watershed, are aimed at improving the water quality and overall habitat conditions. The critical subwatershed identification, coupled with the results, from the Simple method strongly suggest that the primary areas to focus on remediation for sediment reduction also lie within the subwatersheds where peak flow attenuation should occur.

Sediment benchmarks would be established, for the watershed as a whole and for subwatersheds where master plan development is proposed, as part of the implementation of the water quality remediation plan. Benchmarks would be met by the installation of stormwater BMPs as part of redevelopment or development requirement.

7.2 Proposed Water Quality Targets for Biocriteria

The biological condition of Dish Mill Brook Tributary has been previously assessed by VTDEC as described above. Future biomonitoring sampling efforts should be

conducted to track attainment of DEC Class B biocriteria, as presented in Table 8, over time.

7.3 Implementation for Remedial Measures

As described above, Burke has already utilized the results of field identification of impact areas by VHB Pioneer in 2006 to implement numerous small scale remediation actions within the watershed. However, the timing of implementation of larger scale water quality remediation measures will be tied to the timing of planning, design and permitting of future development projects at Burke. This approach must occur of necessity since much of the area within the Dish Mill Tributary watershed will be redeveloped as a result of the project.

7.4 Reporting

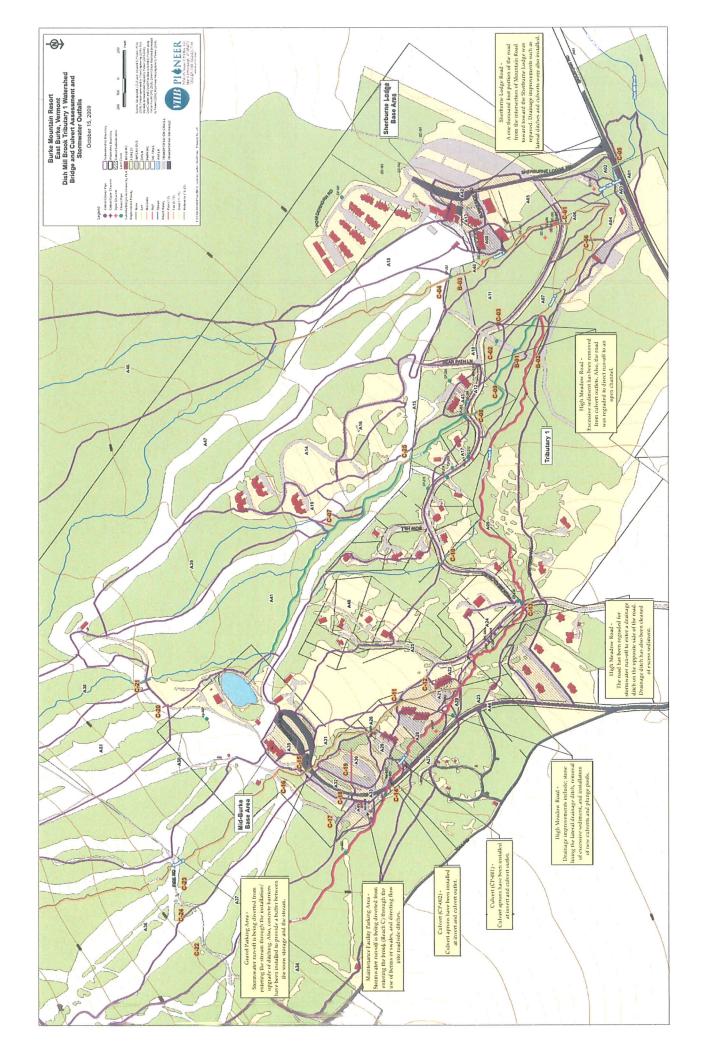
To provide a status report on the progress of plan implementation and monitoring results over time, it is proposed that an annual performance report be prepared for each year that activities are conducted pursuant to the plan). The annual report would be completed in May to cover the activities for the prior calendar year. The first Annual Report would be prepared in the year following initiation of the first phase of master plan related construction activities. The components of the annual report would include the following:

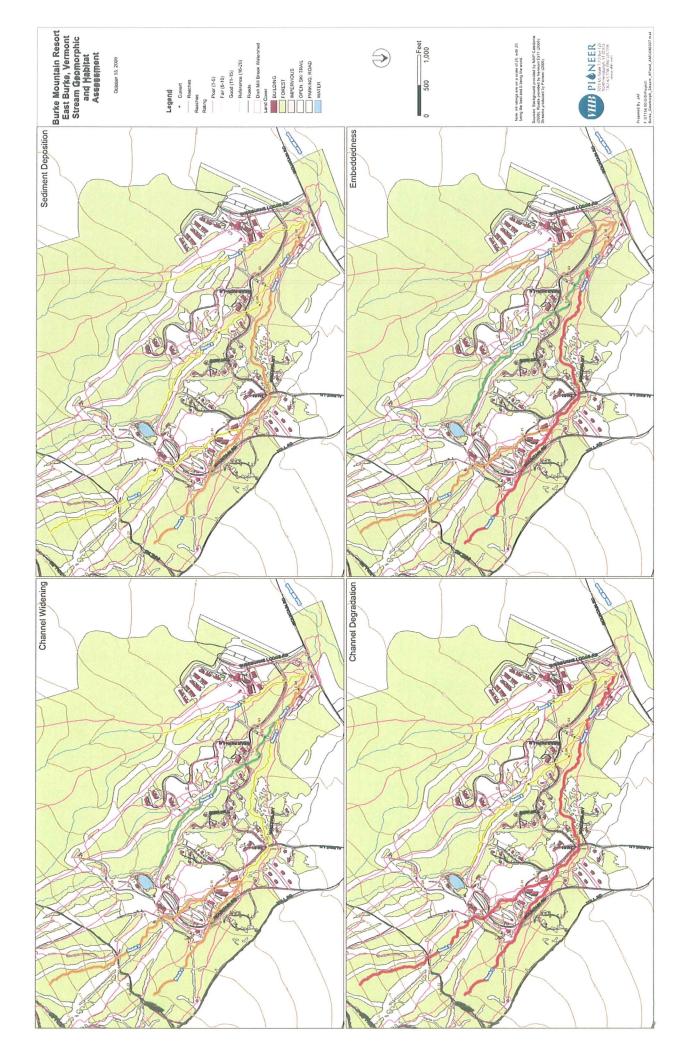
- Summary of monitoring data
- Implementation update of measures to be undertaken
- Update on the feasibility and details of specific measures
- Status report with respect to water quality targets
- Revisions to targets or target dates (if needed)

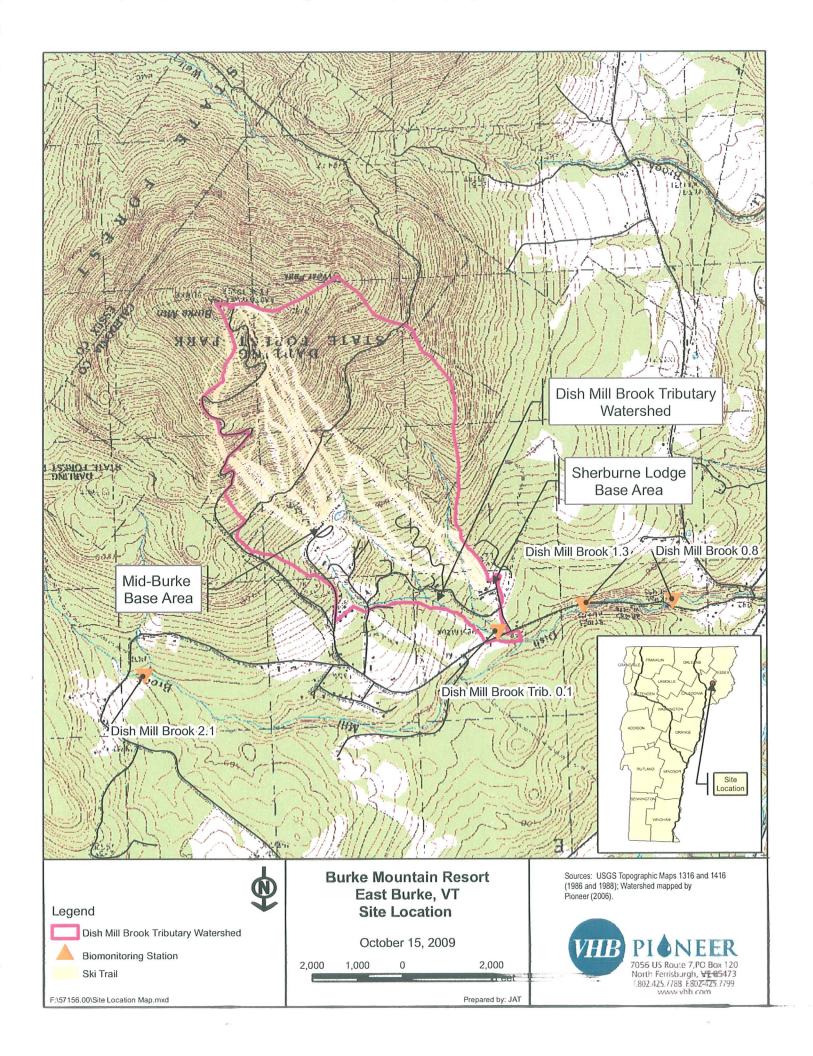
7.5 Conclusions

Burke has proactively entered into a water quality protection effort for the Dish Mill Brook Tributary watershed. Since 2006, a comprehensive assessment of the watershed has been completed, including water chemistry monitoring, stream geomorphic assessment, biomonitoring, and hydrologic and sediment modeling. In addition, several water quality improvement measures, summarized in section 5.4 above have already been implemented. This plan has identified the particular stressors impacting water quality within the Dish Mill Brook Tributary provides the framework for protection of the watershed before, during and after development.

The bulk of this protection effort, including water quality monitoring and development of specific stormwater BMPs will be initiated during the Master Plan Development Phases.




References


- PRISM 2004. Parameter-elevation Regressions on Independent Slopes Model. Vermont Center for Geographic Information. Waterbury, Vermont. 2004
- Schueler 1987. Thomas R. Schueler. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs. Department of Environmental Programs-Metropolitan Washington Council of Governments. July 1987.
- USDA 1961. Technical Paper No. 40 Rainfall Frequency Atlas of the United States.

 Prepared by David M. Hershfield for United States Department of Agriculture, Soil
 Conservation Service. Washington, D.C. May 1961.
- USDA 1986. Urban Hydrology for Small Watersheds. United States Department of Agriculture, Soil Conservation Service. Washington, D.C. June 1986.
- VTDEC 2002. The Vermont Stormwater Management Manual. Vermont Agency of Natural Resources. Waterbury, Vermont. March 2002.
- VTDEC 2003. Vermont Stream Geomorphic Assessment. Vermont Agency of Natural Resources. Waterbury, Vermont. April 2003.

Annual Load = P * Pj * C * A * Rv * 0.226

Where:

P = Yearly rainfall depth

Pj = Fraction of rainfall events producing runoff (0.90) C = Flow weighted mean concentration of pollutant

A = Area of contributing watershed

Rv = 0.05 + 0.009 * (site imperviousness) or accepted value

0.226 = Simple Method Coefficient

P = 42.4 (PRISM climatological data, downloaded from VCGI)

Pj = 0.9

Coefficient = 0.226

Table 1: Sediment Concentration Values

Land	TSS
Use	(mg/L)
Commercial	77
Forest	51
Open	51
Residential	70
Ski Trail	100
Transportation Gravel	374
Transportation Paved	142
Water	0

NYS DEC Draft Manual (2001)
EPA NURP Results for Forest/Rural Open (1993)
NYS DEC Draft Manual (2001)
Pioneer Judgement (2006)
Clinton & Vose - WQ Report (2003)
NYS SMDM (2001)
Pioneer Judgement (2006)

PRISM (2004)

Table 2: Subwatershed Areas (acres)

Leadillea					D	rainage Ar	ea				
Land Use	A01	A02	A03	A04	A05	A06	A07	A08	A09	A10	A11
COMMERCIAL	0.00	0.00	0.04	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FOREST	1.87	0.43	0.20	1.76	1.68	1.24	2.71	0.03	10.61	0.86	6.77
OPEN	0.24	0.01	0.55	0.37	1.57	0.14	0.41	0.00	3.90	0.58	0.53
RESIDENTIAL	0.00	0.00	0.00	0.00	0.57	0.00	0.00	0.25	1.31	0.00	0.00
SKI TRAIL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.04
TRANSPORTATION GRAVEL	0.00	0.11	0.53	0.02	0.47	0.14	0.20	0.41	0.89	0.46	0.48
TRANSPORTATION PAVED	0.17	0.07	0.11	0.00	0.10	0.00	0.00	0.03	0.00	0.00	0.00
WATER	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	2.28	0.62	1.42	2.17	4.40	1.53	3.32	0.78	16.71	1.90	7.81

Landline					D	rainage Ar	ea				
Land Use	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21	A22
COMMERCIAL	0.00	0.32	0.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.00
FOREST	2.72	0.02	5.42	2.25	0.28	0.52	0.28	0.20	0.26	0.03	0.03
OPEN	0.25	0.01	4.20	2.12	1.31	0.19	0.00	0.31	0.05	1.01	0.11
RESIDENTIAL	0.00	0.38	1.14	0.23	0.00	0.24	0.00	0.76	0.00	0.32	0.56
SKI TRAIL	0.00	0.27	1.80	1.51	0.00	0.04	4.50	0.37	0.00	0.00	0.00
TRANSPORTATION GRAVEL	0.24	0.36	1.01	0.57	0.20	0.25	0.00	0.23	0.01	0.32	0.09
TRANSPORTATION PAVED	0.00	0.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
WATER	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	3.21	1.51	13.57	6.67	1.79	1.25	4.85	1.87	0.32	1.69	0.79

Landline					Di	rainage Are	ea				
Land Use	A23	A24	A25	A26	A27	A28	A29	A30	A31	A32	A33
COMMERCIAL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00
FOREST	2.45	0.03	3.86	0.16	2.19	0.98	0.07	0.47	0.59	0.16	0.32
OPEN	0.52	1.05	10.41	0.85	0.40	0.59	0.30	0.88	1.06	0.37	0.40
RESIDENTIAL	0.02	0.02	0.19	0.19	0.01	0.31	0.13	0.00	0.00	0.00	0.00
SKI TRAIL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TRANSPORTATION GRAVEL	0.11	0.26	0.64	0.06	0.00	0.37	0.21	0.91	0.13	0.17	0.18
TRANSPORTATION PAVED	0.06	0.00	0.00	0.00	0.24	0.07	0.00	0.00	0.29	0.15	0.15
WATER	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	3.17	1.36	15.10	1.26	2.84	2.32	0.71	2.27	2.12	0.85	1.06

Landline					D	rainage Are	ea				
Land Use	A34	A35	A36	A37	A38	A39	A40	A41	A42	A43	A44
COMMERCIAL	0.02	0.34	0.29	0.00	0.02	0.00	0.09	0.00	0.08	0.00	0.00
FOREST	23.28	0.03	73.49	11.86	32.05	10.17	7.05	21.19	0.00	0.21	0.79
OPEN	1.91	0.74	1.47	0.48	0.02	0.00	4.22	2.69	0.54	0.18	0.51
RESIDENTIAL	0.00	0.00	0.00	0.00	0.00	0.38	1.57	1.00	0.00	0.46	0.02
SKI TRAIL	2.09	0.09	29.35	6.57	22.17	2.48	0.67	8.01	0.00	0.00	0.00
TRANSPORTATION GRAVEL	0.14	0.08	0.43	0.51	0.07	0.05	0.66	0.97	0.13	0.23	0.15
TRANSPORTATION PAVED	0.20	0.82	2.64	0.06	0.01	0.00	0.00	0.00	0.45	0.00	0.11
WATER	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	27.63	2.11	107.68	19.47	54.35	13.08	14.27	33.87	1.19	1.07	1.58

Landline			Di	rainage Are	ea			Total
Land Use	A45	A46	A47	A48	A49	A50	A51	Total
COMMERCIAL	0.00	0.00	0.04	0.01	0.06	0.12	0.00	1.58
FOREST	0.92	194.53	90.74	2.51	0.18	10.95	4.93	536.30
OPEN	1.42	0.00	0.03	0.05	0.46	1.56	0.00	50.97
RESIDENTIAL	0.13	0.00	0.00	0.23	0.00	0.00	0.00	10.40
SKI TRAIL	0.00	0.04	17.71	0.87	0.00	10.28	15.56	124.50
TRANSPORTATION GRAVEL	0.67	0.00	0.06	0.22	0.24	0.87	0.29	15.82
TRANSPORTATION PAVED	0.06	0.00	0.00	0.00	0.00	0.00	0.03	5.99
WATER	0.00	0.00	0.00	0.00	0.00	0.96	0.00	0.96
Total	3.20	194.56	108.58	3.89	0.94	24.74	20.80	746.52

Table 3: Percent Imperviousness

Londillon					Dı	rainage Ar	ea				
Land Use	A01	A02	A03	A04	A05	A06	A07	A08	A09	A10	A11
COMMERCIAL	0.00%	0.00%	2.94%	1.02%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
FOREST	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
OPEN	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
RESIDENTIAL	0.00%	0.00%	0.00%	0.00%	2.89%	0.00%	0.00%	19.72%	1.27%	0.00%	0.00%
SKI TRAIL	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
TRANSPORTATION GRAVEL	0.00%	18.12%	37.02%	0.75%	10.75%	9.30%	6.14%	51.96%	5.32%	24.31%	6.21%
TRANSPORTATION PAVED	7.39%	10.84%	7.50%	0.00%	2.25%	0.00%	0.00%	3.84%	0.00%	0.00%	0.00%
WATER	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Subwatershed %	0.55%	4.46%	14.36%	0.02%	1.58%	0.87%	0.38%	33.40%	0.38%	5.91%	0.39%

Land Use					Di	rainage Ar	ea				
Land Ose	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21	A22
COMMERCIAL	0.00%	11.39%	0.00%	0.00%	0.00%	0.00%	1.58%	0.00%	0.00%	0.00%	0.00%
FOREST	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
OPEN	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
RESIDENTIAL	0.00%	9.26%	2.41%	0.62%	0.00%	1.99%	0.00%	9.16%	0.00%	10.62%	9.84%
SKI TRAIL	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
TRANSPORTATION GRAVEL	7.59%	23.73%	7.46%	8.49%	11.06%	20.25%	0.01%	12.23%	2.40%	18.92%	11.71%
TRANSPORTATION PAVED	0.00%	10.67%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
WATER	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Subwatershed %	0.58%	11.47%	0.76%	0.74%	1.22%	4.48%	0.02%	5.20%	0.06%	5.63%	8.27%

Landillan					Di	rainage Ar	ea				
Land Use	A23	A24	A25	A26	A27	A28	A29	A30	A31	A32	A33
COMMERCIAL	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.12%	0.22%	0.00%	0.00%
FOREST	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
OPEN	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
RESIDENTIAL	0.60%	1.53%	0.94%	1.99%	0.00%	6.38%	7.25%	0.00%	0.00%	0.00%	0.00%
SKI TRAIL	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
TRANSPORTATION GRAVEL	3.60%	19.34%	4.21%	4.71%	0.00%	16.02%	29.62%	40.27%	6.26%	20.54%	17.24%
TRANSPORTATION PAVED	1.89%	0.00%	0.00%	0.00%	8.29%	3.23%	0.00%	0.00%	13.71%	17.60%	14.67%
WATER	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Subwatershed %	0.17%	3.77%	0.19%	0.53%	0.69%	3.52%	10.10%	16.22%	2.28%	7.32%	5.12%

Land Use					Dr	ainage Ar	еа				
Land Ose	A34	A35	A36	A37	A38	A39	A40	A41	A42	A43	A44
COMMERCIAL	0.08%	8.72%	0.12%	0.00%	0.03%	0.00%	0.65%	0.00%	0.60%	0.00%	0.00%
FOREST	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
OPEN	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
RESIDENTIAL	0.00%	0.00%	0.00%	0.00%	0.00%	0.09%	1.95%	0.57%	0.00%	15.38%	0.96%
SKI TRAIL	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
TRANSPORTATION GRAVEL	0.51%	3.78%	0.40%	2.63%	0.13%	0.36%	4.64%	2.86%	10.91%	21.08%	9.66%
TRANSPORTATION PAVED	0.72%	39.17%	2.46%	0.29%	0.02%	0.00%	0.00%	0.00%	37.61%	0.00%	7.15%
WATER	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Subwatershed %	0.01%	16.90%	0.06%	0.07%	0.00%	0.00%	0.43%	0.10%	15.37%	11.01%	1.45%

Land Use			D	rainage Ar	ea			Total
Land Ose	A45	A46	A47	A48	A49	A50	A51	Total
COMMERCIAL	0.00%	0.00%	0.02%	0.01%	1.51%	12.87%	0.00%	
FOREST	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
OPEN	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
RESIDENTIAL	4.03%	0.00%	0.00%	0.12%	0.00%	0.00%	0.00%	
SKI TRAIL	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
TRANSPORTATION GRAVEL	20.89%	0.00%	0.03%	0.20%	6.22%	93.12%	1.15%	
TRANSPORTATION PAVED	2.02%	0.00%	0.00%	0.00%	0.00%	0.00%	0.13%	
WATER	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
Subwatershed %	4.57%	0.00%	0.00%	0.02%	1.70%	3.34%	0.02%	

Table 4:

Runoff Coefficients

Landling					Di	rainage Ar	ea				
Land Use	A01	A02	A03	A04	A05	A06	A07	A08	A09	A10	A11
COMMERCIAL	0.05	0.05	0.08	0.06	0.05	0.05	0.05	0.05	0.05	0.05	0.05
FOREST	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
OPEN	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
RESIDENTIAL	0.05	0.05	0.05	0.05	0.08	0.05	0.05	0.23	0.06	0.05	0.05
SKI TRAIL	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
TRANSPORTATION GRAVEL	0.05	0.21	0.38	0.06	0.15	0.13	0.11	0.52	0.10	0.27	0.11
TRANSPORTATION PAVED	0.12	0.15	0.12	0.05	0.07	0.05	0.05	0.08	0.05	0.05	0.05
WATER	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Total											

Land Use					Di	rainage Ar	ea				
Land Ose	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21	A22
COMMERCIAL	0.05	0.15	0.05	0.05	0.05	0.05	0.06	0.05	0.05	0.05	0.05
FOREST	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
OPEN	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
RESIDENTIAL	0.05	0.13	0.07	0.06	0.05	0.07	0.05	0.13	0.05	0.15	0.14
SKI TRAIL	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
TRANSPORTATION GRAVEL	0.12	0.26	0.12	0.13	0.15	0.23	0.05	0.16	0.07	0.22	0.16
TRANSPORTATION PAVED	0.05	0.15	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
WATER	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Total											

Landillan					D	rainage Ar	ea				
Land Use	A23	A24	A25	A26	A27	A28	A29	A30	A31	A32	A33
COMMERCIAL	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
FOREST	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
OPEN	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
RESIDENTIAL	0.06	0.06	0.06	0.07	0.05	0.11	0.12	0.05	0.05	0.05	0.05
SKI TRAIL	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
TRANSPORTATION GRAVEL	0.08	0.22	0.09	0.09	0.05	0.19	0.32	0.41	0.11	0.23	0.21
TRANSPORTATION PAVED	0.07	0.05	0.05	0.05	0.12	0.08	0.05	0.05	0.17	0.21	0.18
WATER	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Total											

Landline					Dr	rainage Ar	ea				
Land Use	A34	A35	A36	A37	A38	A39	A40	A41	A42	A43	A44
COMMERCIAL	0.05	0.13	0.05	0.05	0.05	0.05	0.06	0.05	0.06	0.05	0.05
FOREST	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
OPEN	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
RESIDENTIAL	0.05	0.05	0.05	0.05	0.05	0.05	0.07	0.06	0.05	0.19	0.06
SKI TRAIL	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
TRANSPORTATION GRAVEL	0.05	0.08	0.05	0.07	0.05	0.05	0.09	0.08	0.15	0.24	0.14
TRANSPORTATION PAVED	0.06	0.40	0.07	0.05	0.05	0.05	0.05	0.05	0.39	0.05	0.11
WATER	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Total											

Londillon			Di	rainage Ar	ea			Total
Land Use	A45	A46	A47	A48	A49	A50	A51	Total
COMMERCIAL	0.05	0.05	0.05	0.05	0.06	0.17	0.05	
FOREST	0.05	0.05	0.05	0.05	0.05	0.05	0.05	
OPEN	0.05	0.05	0.05	0.05	0.05	0.05	0.05	
RESIDENTIAL	0.09	0.05	0.05	0.05	0.05	0.05	0.05	
SKI TRAIL	0.05	0.05	0.05	0.05	0.05	0.05	0.05	
TRANSPORTATION GRAVEL	0.24	0.05	0.05	0.05	0.11	0.89	0.06	
TRANSPORTATION PAVED	0.07	0.05	0.05	0.05	0.05	0.05	0.05	
WATER	0.05	0.05	0.05	0.05	0.05	0.05	0.05	
Total								

Table 5:

Stormwater Treatment (%)

Land Use					Dr	ainage Ar	ea				
Land Ose	A01	A02	A03	A04	A05	A06	A07	A08	A09	A10	A11
COMMERCIAL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
FOREST	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
OPEN	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
RESIDENTIAL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
SKI TRAIL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
TRANSPORTATION GRAVEL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
TRANSPORTATION PAVED	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
WATER	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Total											

Land Haa					Di	rainage Ar	ea				
Land Use	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21	A22
COMMERCIAL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
FOREST	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
OPEN	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
RESIDENTIAL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
SKI TRAIL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
TRANSPORTATION GRAVEL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
TRANSPORTATION PAVED	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
WATER	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Total											

Landling					D	rainage Ar	ea				
Land Use	A23	A24	A25	A26	A27	A28	A29	A30	A31	A32	A33
COMMERCIAL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
FOREST	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
OPEN	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
RESIDENTIAL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
SKI TRAIL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
TRANSPORTATION GRAVEL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
TRANSPORTATION PAVED	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
WATER	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Total											

Land Use					Di	rainage Ar	ea				
Land Ose	A34	A35	A36	A37	A38	A39	A40	A41	A42	A43	A44
COMMERCIAL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
FOREST	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
OPEN	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
RESIDENTIAL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
SKI TRAIL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
TRANSPORTATION GRAVEL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
TRANSPORTATION PAVED	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
WATER	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Total				'							

Land Use			D	rainage Ar	ea			Total
Land Use	A45	A46	A47	A48	A49	A50	A51	Total
COMMERCIAL	0%	0%	0%	0%	0%	0%	0%	
FOREST	0%	0%	0%	0%	0%	0%	0%	
OPEN	0%	0%	0%	0%	0%	0%	0%	
RESIDENTIAL	0%	0%	0%	0%	0%	0%	0%	
SKI TRAIL	0%	0%	0%	0%	0%	0%	0%	
TRANSPORTATION GRAVEL	0%	0%	0%	0%	0%	0%	0%	
TRANSPORTATION PAVED	0%	0%	0%	0%	0%	0%	0%	
WATER	0%	0%	0%	0%	0%	0%	0%	
Total								

Table 6:

Subwatershed Annual Suspended Solids Load (pounds per year)

Land Use						Drainage A	Areas				
Land Ose	A01	A02	A03	A04	A05	A06	A07	A08	A09	A10	A11
COMMERCIAL	0.0	0.0	2.1	0.9	0.0	0.0	0.0	0.2	0.0	0.0	0.0
FOREST	41.2	9.5	4.4	38.6	37.0	27.3	59.5	0.7	233.3	18.9	148.8
OPEN	5.2	0.2	12.0	8.2	34.5	3.2	9.0	0.0	85.9	12.7	11.6
RESIDENTIAL	0.0	0.0	0.0	0.0	26.2	0.0	0.0	34.1	48.6	0.0	0.0
SKI TRAIL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	1.5
TRANSPORTATION GRAVEL	0.0	77.5	651.1	3.0	223.8	61.2	69.1	677.8	280.8	401.0	165.6
TRANSPORTATION PAVED	24.1	12.2	15.4	0.0	8.5	0.0	0.0	3.1	0.0	0.0	0.0
WATER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	70.5	99.5	685.0	50.6	330.0	91.6	137.6	718.4	648.6	432.7	327.5
Unitized (lbs/ac/yr)	30.9	159.7	481.4	23.4	75.1	60.1	41.5	919.5	38.8	227.5	41.9

Landllan						Drainage /	Areas				
Land Use	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21	A22
COMMERCIAL	0.0	32.0	0.0	0.0	0.0	0.0	3.3	0.0	0.0	0.0	0.0
FOREST	59.8	0.4	119.2	49.4	6.1	11.5	6.1	4.5	5.6	0.6	8.0
OPEN	5.4	0.2	92.3	46.7	28.7	4.3	0.0	6.8	1.2	22.3	2.4
RESIDENTIAL	0.0	30.2	49.4	7.6	0.0	9.7	0.0	60.5	0.0	28.6	46.6
SKI TRAIL	0.0	11.6	77.7	65.2	0.1	1.8	193.9	16.0	0.0	0.0	0.0
TRANSPORTATION GRAVEL	93.1	304.0	382.6	230.8	95.3	189.4	0.1	118.1	1.8	226.6	46.7
TRANSPORTATION PAVED	0.0	28.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WATER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	158.4	407.2	721.2	399.6	130.3	216.7	203.2	205.8	8.6	278.1	96.5
Unitized (lbs/ac/yr)	49.3	270.3	53.1	59.9	72.9	173.6	41.9	110.1	27.0	165.0	121.4

Lead Hea						Drainage /	Areas				
Land Use	A23	A24	A25	A26	A27	A28	A29	A30	A31	A32	A33
COMMERCIAL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	1.5	0.0	0.0
FOREST	53.9	0.7	85.0	3.4	48.3	21.5	1.5	10.4	12.9	3.5	7.0
OPEN	11.5	23.1	229.0	18.7	8.8	13.0	6.7	19.4	23.3	8.1	8.8
RESIDENTIAL	0.6	0.8	6.6	8.0	0.3	19.9	9.1	0.0	0.0	0.0	0.0
SKI TRAIL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0
TRANSPORTATION GRAVEL	30.3	190.6	180.6	17.6	0.0	232.7	215.5	1,215.6	45.4	132.4	120.5
TRANSPORTATION PAVED	4.9	0.0	0.0	0.0	35.9	7.2	0.0	0.0	61.6	38.3	34.5
WATER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	101.4	215.2	501.2	47.7	93.2	294.3	232.8	1,245.4	144.9	182.3	170.8
Unitized (lbs/ac/yr)	32.0	157.8	33.2	37.9	32.8	126.9	326.6	549.0	68.5	214.1	161.7

Land Use						Drainage /	Areas				
Land Ose	A34	A35	A36	A37	A38	A39	A40	A41	A42	A43	A44
COMMERCIAL	0.7	29.1	9.7	0.0	0.6	0.0	3.5	0.0	2.9	0.0	0.0
FOREST	511.9	0.7	1,616.2	260.8	704.9	223.6	155.0	465.9	0.0	4.6	17.3
OPEN	41.9	16.2	32.3	10.5	0.5	0.0	92.8	59.3	11.8	3.9	11.2
RESIDENTIAL	0.0	0.0	0.0	0.0	0.0	11.6	63.9	33.4	0.0	52.0	0.5
SKI TRAIL	90.2	4.1	1,265.8	283.1	956.0	107.0	29.1	345.5	0.0	0.0	0.0
TRANSPORTATION GRAVEL	24.8	21.5	74.6	121.7	11.9	8.1	196.2	236.2	62.2	174.3	67.4
TRANSPORTATION PAVED	13.7	406.6	233.5	3.7	0.8	0.0	0.0	0.0	213.4	0.0	15.8
WATER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total	683.3	478.1	3,232.0	679.8	1,674.7	350.3	540.4	1,140.3	290.2	234.8	112.2
Unitized (lbs/ac/yr)	24.7	227.1	30.0	34.9	30.8	26.8	37.9	33.7	243.3	219.5	71.1

Landline			Dr	ainage Are	as			Total
Land Use	A45	A46	A47	A48	A49	A50	A51	Total
COMMERCIAL	0.0	0.0	1.4	0.4	2.5	13.3	0.0	103.96
FOREST	20.2	4,277.9	1,995.5	55.2	3.9	240.9	108.4	11,794.09
OPEN	31.3	0.0	0.6	1.0	10.1	34.2	0.0	1,120.84
RESIDENTIAL	6.7	0.0	0.0	7.0	0.0	0.0	0.0	561.98
SKI TRAIL	0.0	1.7	763.8	37.7	0.0	443.5	670.8	5,368.67
TRANSPORTATION GRAVEL	514.0	0.0	9.4	36.9	82.6	2,496.7	55.6	10,874.59
TRANSPORTATION PAVED	5.4	0.0	0.0	0.0	0.0	0.0	2.0	1,169.18
WATER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
Total	577.6	4,279.6	2,770.6	138.2	99.1	3,228.6	836.8	30,993.31
Unitized (lbs/ac/yr)	180.3	22.0	25.5	35.5	105.9	130.5	40.2	41.5

Table 1: Simple Method: Ar	nnual Sediment Loads			
Land Cover	Load (pounds/year)			
COMMERCIAL	104			
FOREST	11,794			
OPEN	1,121			
RESIDENTIAL	562			
SKI TRAIL	5,369			
TRANSPORTATION GRAVEL	10,875			
TRANSPORTATION PAVED	1,169			
WATER	0			
Total	30,993			
Unitized (lbs/ac/yr)	42			

Pioneer Environmental Associates, LLC. Burke Mountain Resort Stream Geomorphic Assessment Field Collection Team and Training

Tom Shea and Alex Geller, both of Pioneer Environmental Associates, LLC. (Pioneer), conducted the field work. In 2005, Tom Shea attended a three day Vermont DEC River Management Division sponsored Phase 2 SGA training. He is currently a trained field team member for a Stream Geomorphic Assessment on White Creek and Mill Brook for a competitively awarded project administered by the Bennington County Conservation District. For that project he received another one day of training in the field with Shannon Pytlick of VTDEC River Management Division. Alex Geller was trained by Tom Shea for one day and conducted pebble counts and surveyed cross sections by himself on the second day.

Data Collection Review

The RHA and RGA were completed upon inspection of the entire reach. Upon returning from the field, forms were scanned into an Adobe Acrobat format (pdf). Form data were reviewed by William McDavitt, Senior Fluvial Geomorphologist of Pioneer. Subcomponent RHA and RGA scored were entered into a shapefile with column headers appropriate for each subcomponent. The beginning and end of each reach was noted on the field map and reviewed in the office by looking at an aerial photograph.

Cross section and pebble count data were entered into a Microsoft Excel spreadsheet. Cross section locations were checked and verified on the field map.

Burke/Stantec WQRP 2007 9/12/2007 Pioneer Environmental Associates, LLC. SGA Phase II QA/QC Worksheet

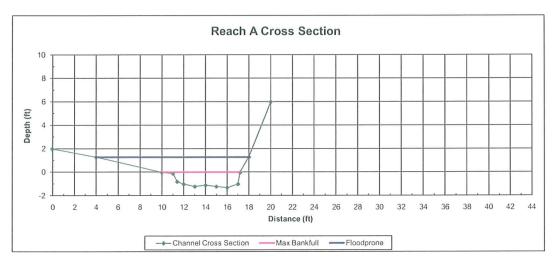
Date:	9/12/2007
Stream Name:	Dish Mill Brook Tributary 1
Watershed:	Dish Mill Brook
QA Team Leader:	Zachary M. York
Organization:	Pioneer Environmental Associates, LLC.
Protocols Used:	VT DEC SGA Phase II Field Forms

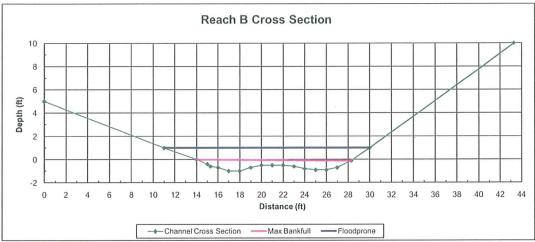
Step	Method Used	Confidence Level	Data Collection/ Entry Date	Date Updated	Date of Local QA Team Review	Comments
Quality Assurance	VT DEC RMS sponsored Phase 2 SGA training - 10/4/05-10/7/05	High	N/A	N/A	N/A	Tom Shea attended SGA training; see narrative for details
Data Collection	VT DEC SGA Phase 2 Field Forms	High/Moderately High	7/12/2007 and 7/13/2007	N/A	N/A	Tom Shea (high confidence) Alex Geller (moderately high confidence)
Data Entry	MS Excel spreadsheets	High	7/16/2007	N/A	9/7/2007	No errors or omissions found
Quality Control	Review All Field Forms and Geodatabase for Omissions and/or Errors	High	N/A	N/A	9/7/2007	No errors or omissions found

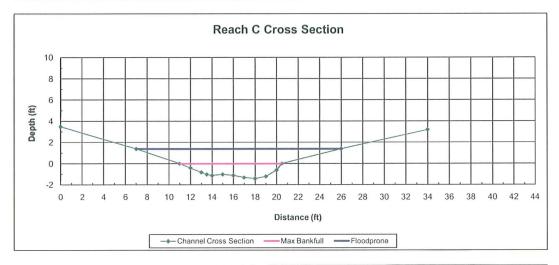
Pioneer Environmental Associates, LLC. Burke Mountain Resort Bridge and Culvert Assessment Field Collection Team and Training

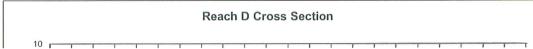
Jesse Therrien and Eric Hebert of Pioneer Environmental Associates, LLC. (Pioneer) conducted the field work. Both field members received a 1/2 day training on Bridge and Culvert Assessments on May 17th from Tom Shea of Pioneer at Bolton Mountain Resort. The training reviewed all aspects of the BCA form for bridges and culverts.

Tom Shea is currently a trained field team member for a Stream Geomorphic Assessment on White Creek and Mill Brook for a competitively awarded project administered by the Bennington County Conservation District. For that project he received another one day of training in the field with Shannon Pytlick of Vermont DEC River Management Division. Jesse and Eric collected all data together in order to assure an overall consistency in their data collection.

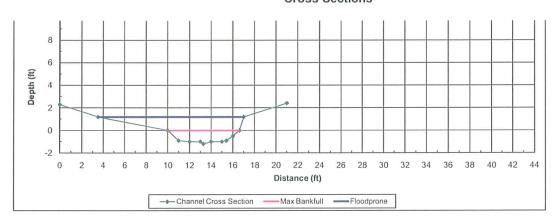

Data Collection Review and Storage

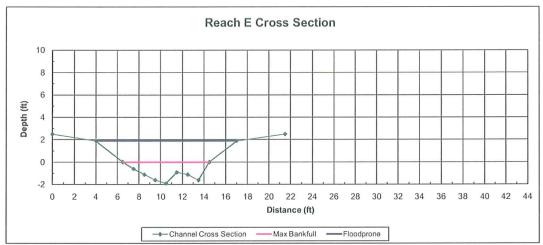

Zac York of Pioneer reviewed the BCA forms for errors and omissions. Upon returning from the field, forms were scanned into an Adobe Acrobat format. Pioneer has developed a Personal Geodatabase using ESRI's ArcMap 9.2. The personal geodatabase was developed with domains in a manner very similar to the Data Management System developed by the VTDEC. The location of each bridge and culvert was located using a GPS.

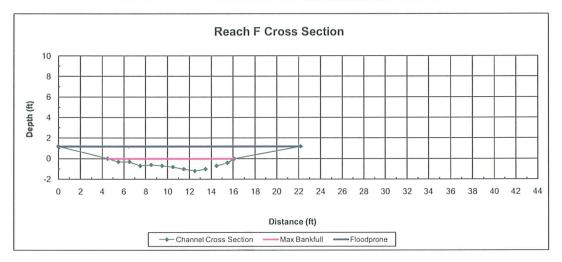

Burke/Stantec WQRP 2007 9/12/2007 Pioneer Environmental Associates, LLC. Bridge and Culvert Assessment QA/QC Worksheet


Date:	9/12/2007
Stream Name:	Dish Mill Brook Tributary 1
Watershed:	Dish Mill Brook
QA Team Leader:	Zachary M. York
Organization:	Pioneer Environmental Associates, LLC.
Protocols Used:	VT DEC Phase II BCA Field Forms

Burke Mountain Resort WQRP Cross Sections

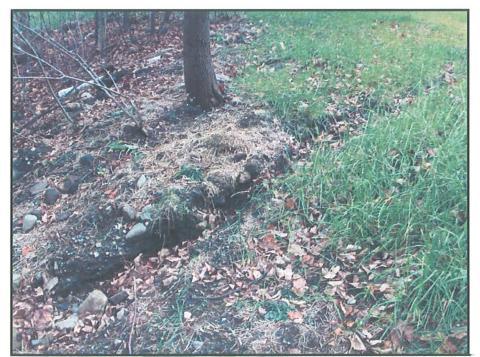






Burke Mountain Resort WQRP Cross Sections

Photograph 1: OC-004. November 9, 2006



Photograph 2: OC-005. November 9, 2006

Photographs taken by Robert J. Stewart of Pioneer Environmental Associates, LLC.

Photograph 3: OC-006. November 9, 2006

Photograph 4: OC-008. November 9, 2006

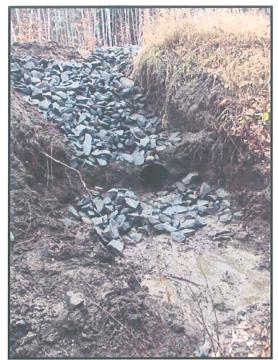
Photograph 5: OC-009. November 9, 2006

Photograph taken by Robert J. Stewart of Pioneer Environmental Associates, LLC.

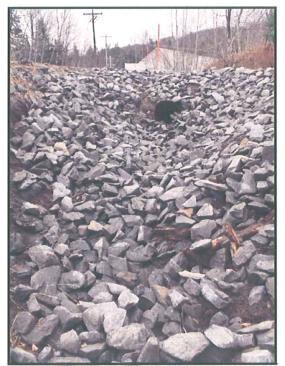
Photograph 6: OC-203. November 9, 2006

Photograph 7: OC-208. November 9, 2006

Photograph 8: OC-209. November 9, 2006



Photograph 9: OC-210. November 9, 2006

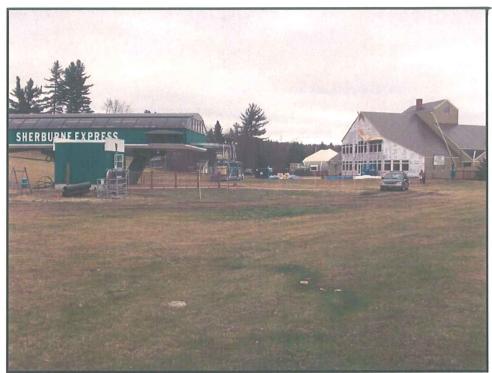


Photograph 10: OC-211. November 9, 2006

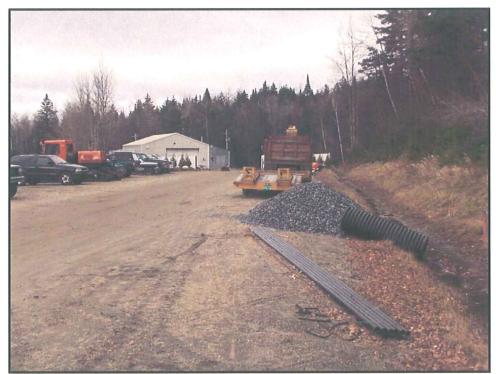
Photographs taken by Jesse A. Therrien of Pioneer Environmental Associates, LLC.

Photograph 11: CP-001. November 9, 2006

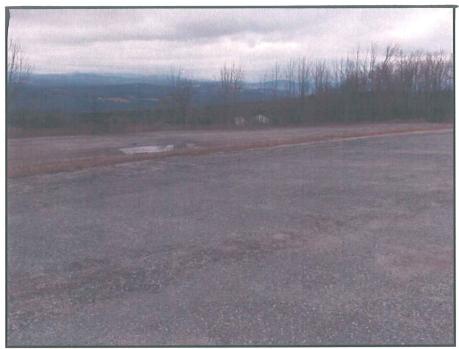
Photograph 12: CP-002. November 9, 2006

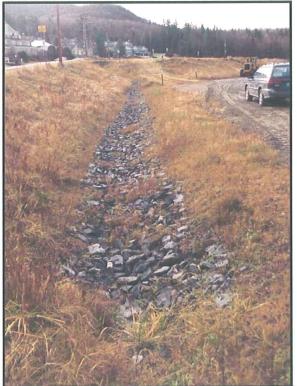


Photograph 13: CP-203. November 9, 2006



Photograph 14: CP-207. November 9, 2006


Photographs taken by Jesse A. Therrien of Pioneer Environmental Associates, LLC.

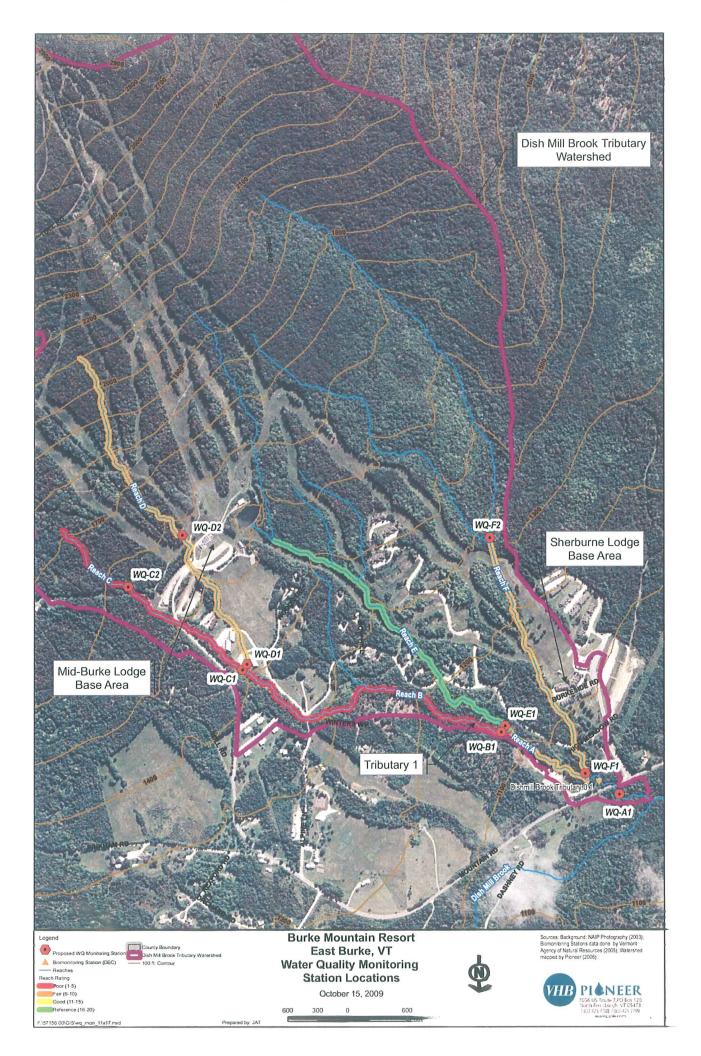

Photograph 15: Subwatershed A13. November 10, 2006

Photograph 16: Subwatershed A32. November 10, 2006

Photograph 17: Subwatershed A35. November 10, 2006

Photograph 18: Subwatershed A42. November 9, 2006

Photograph 1: C-03 (Inlet) - Excessive Sediment Obstruction


Photograph 2: C-07 (Outlet) – Six foot Outlet Drop

Photograph 3: C-19 (Outlet) – Two foot or Greater Outlet Drop

Photograph 4: C-20 (Outlet) - Two foot or Greater Outlet Drop

be fai

Project

Burke Mountain

Station

Dish Mill Trib.

Stream Location

Sample Date

Dish Mill Trib.

River Mile 0.1

10/01/07

Class

Small, High Gradient, B2-3

Cathy Szal, Pioneer Environmental Associates, LLC Sampler

APPLICATION OF STATE OF VERMONT BIOCRITERIA (2/10/03)

				Metric Scor	ing Results	,		
Metric	Value		Based	on ANR Th	resholds fo	or SHG		
Metric	Value	Class	B2-3	Clas	s B1	Clas	s A	
		Threshold	Outcome	Threshold	Outcome	Threshold	Outcome	
Density	138.5	<u>≥</u> 300	Fail	≥400	+	<u>≥</u> 500	+	B1 and A should
Richness	31.5	<u>≥</u> 27	Pass	<u>≥</u> 31	[+	≥35	Fail	
EPT	19.5	<u>≥</u> 16	Pass	<u>≥</u> 19	+	<u>≥</u> 21	Fail	
РМА-О	87.6	<u>≥</u> 45	Pass	<u>≥</u> 55	Pass	<u>≥</u> 65	Pass	
ВІ	1.91	≤4.50 Pass ≤3.50 Pass ≤3.00 Pass						
%Oligo	4.0	<u>≤</u> 12	Pass	<u>≤</u> 5	[+	<u>≤</u> 2	Fail	
EPT/EPT+C	0.95	≥0.45	Pass	<u>≥</u> 0.55	Pass	≥0.65	Pass	
PPCS-F	0.71	<u>≥</u> 0.40	Pass	<u>≥</u> 0.45	Pass	<u>≥</u> 0.50	Pass	
Outcome								
Metrics not in c with Class B2-3				Den	sity			

Outcome Guidelines

- 1) Aquatic Life Use is "supported" when: a) five or more metrics are scored "pass" and no metrics are below the threshold value (I-).
- 2) Aquatic Life Use is "not supported" when one or more metrics are scored "failed".
- 3) In situations where neither items 1 or 2 are met, DEC will make an "indeterminate" finding and require further assessment. "Indeterminate" findings may be qualified by a plus or minus designation, indicating a tendency toward "support" or "nonsupport" status.

Scoring Guidelines - Wadeable Stream Category SHG

								EPT/	
WQ Class	Score	Density	Richness	EPT	PMA-O	BI	% Oligo	EPT+C	PPCS-F
	Full Support	<u>≥</u> 605	≥36	>22	≥70	<u><</u> 2.70	<u><</u> 1	<u>≥</u> 0.67	<u>≥</u> 0.55
A-1	Threshold	≥500	≥35	<u>≥</u> 21	<u>≥</u> 65	<u>≤</u> 3	<u><</u> 2	<u>≥</u> 0.65	<u>≥</u> 0.5
	Non-Support	<u>≤</u> 450	<u>≤</u> 34	<u>≤</u> 20	<60	<u>≥</u> 3.30	<u>≥</u> 3	<u>≤</u> 0.63	<u>≤</u> 0.45
	Full Support	<u>≥</u> 450	≥32	≥20	≥60	<u>≤</u> 3.35	<u>≤</u> 3.5	≥0.57	<u>≥</u> 0.50
B1	Threshold	<u>≥</u> 400	≥31	<u>≥</u> 19	<u>≥</u> 55	<u>≤</u> 3.5	<u>≤</u> 5	<u>≥</u> 0.55	≥0.45
	Non-Support	<u>≤</u> 350	<u>≤</u> 30	<u><</u> 18	<u>≤</u> 50	<u>≥</u> 3.65	<u>≥</u> 6.5	<u>≤</u> 0.53	<u>≤</u> 0.40
	Full Support	≥350	≥28	<u>≥</u> 17	<u>≥</u> 50	<u>≤</u> 4.35	<u>≤</u> 9.5	≥0.47	≥0.45
B2-3	Threshold	≥300	<u>≥</u> 27	≥16	<u>≥</u> 45	<u>≤</u> 4.5	<u>≤</u> 12	≥0.45	<u>≥</u> 0.4
	Non-Support	<u>≤</u> 250	<u>≤</u> 26	<u>≤</u> 15	<u>≤</u> 40	<u>≥</u> 4.65	<u>≥</u> 14.5	<u><</u> 0.43	≤0.35

Project

Burke Mountain

Station

Dish Mill 1.3

Stream Location

Sample Date

Dish Mill Brook

10/01/07

River Mile 1.3

Class

Small, High Gradient, B2-3

Sampler

Cathy Szal, Pioneer Environmental Associates, LLC

APPLICATION OF STATE OF VERMONT BIOCRITERIA (2/10/03)

				Metric Scor	ing Results	3					
Metric	Value		Based	on ANR Th	resholds fo	or SHG					
Wetric	value	Class	B2-3	Clas	s B1	Clas	ss A				
		Threshold	Outcome	Threshold	Outcome	Threshold	Outcome				
Density	354.0	<u>≥</u> 300	Pass	≥400	+	<u>≥</u> 500	+				
Richness	31.5	<u>≥</u> 27	Pass	<u>≥</u> 31	[+	<u>≥</u> 35	Fail				
EPT	20	<u>≥</u> 16	Pass	<u>≥</u> 19	Pass	<u>≥</u> 21	Fail				
РМА-О	66.4	<u>≥</u> 45	Pass	<u>≥</u> 55	Pass	<u>≥</u> 65	J+				
ві	1.90	<u><</u> 4.50	Pass	<u>≤</u> 3.50	Pass	<u>≤</u> 3.00	Pass				
%Oligo	1.4	<u>≤</u> 12	Pass	<u>≤</u> 5	Pass	<u><</u> 2	[+				
EPT/EPT+C	0.96	<u>≥</u> 0.45	Pass	<u>≥</u> 0.55	Pass	<u>≥</u> 0.65	Pass				
PPCS-F	0.47	<u>≥</u> 0.40	Pass	<u>≥</u> 0.45	[+	<u>≥</u> 0.50	l-				
Outcome		Passes Class B2-3									
Metrics not in c											

A should be fail

Outcome Guidelines

- 1) Aquatic Life Use is "supported" when: a) five or more metrics are scored "pass" and no metrics are below the threshold value (I-).
- 2) Aquatic Life Use is "not supported" when one or more metrics are scored "failed".
- 3) In situations where neither items 1 or 2 are met, DEC will make an "indeterminate" finding and require further assessment. "Indeterminate" findings may be qualified by a plus or minus designation, indicating a tendency toward "support" or "nonsupport" status.

Scoring Guidelines - Wadeable Stream Category SHG

								EPT/	
WQ Class	Score	Density	Richness	EPT	PMA-O	BI	% Oligo	EPT+C	PPCS-F
	Full Support	<u>≥</u> 605	≥36	>22	≥70	<u><</u> 2.70	<u><</u> 1	≥0.67	≥0.55
A-1	Threshold	≥500	≥35	<u>≥</u> 21	<u>≥</u> 65	<u>≤</u> 3	<u>≤</u> 2	≥0.65	<u>≥</u> 0.5
	Non-Support	<u>≤</u> 450	<u>≤</u> 34	<u>≤</u> 20	<60	<u>≥</u> 3.30	<u>≥</u> 3	<u>≤</u> 0.63	<u>≤</u> 0.45
	Full Support	<u>≥</u> 450	≥32	≥20	≥60	<u>≤</u> 3.35	≤3.5	≥0.57	≥0.50
B1	Threshold	<u>≥</u> 400	<u>≥</u> 31	<u>≥</u> 19	<u>≥</u> 55	<u>≤</u> 3.5	<u>≤</u> 5	≥0.55	≥0.45
	Non-Support	<u>≤</u> 350	<u>≤</u> 30	<u>≤</u> 18	<u>≤</u> 50	<u>≥</u> 3.65	<u>≥</u> 6.5	<u>≤</u> 0.53	<u>≤</u> 0.40
	Full Support	<u>≥</u> 350	≥28	<u>≥</u> 17	≥50	<u>≤</u> 4.35	<u>≤</u> 9.5	≥0.47	≥0.45
B2-3	Threshold	≥300	<u>≥</u> 27	≥16	<u>≥</u> 45	<u>≤</u> 4.5	<u>≤</u> 12	<u>≥</u> 0.45	<u>≥</u> 0.4
	Non-Support	<u>≤</u> 250	<u>≤</u> 26	<u>≤</u> 15	<u>≤</u> 40	<u>≥</u> 4.65	<u>≥</u> 14.5	≤0.43	<u>≤</u> 0.35

Project

Burke Mountain

Station

Sample Date

Dish Mill 2.1

Stream Dish Mill Brook Location

River Mile 2.1

10/01/07

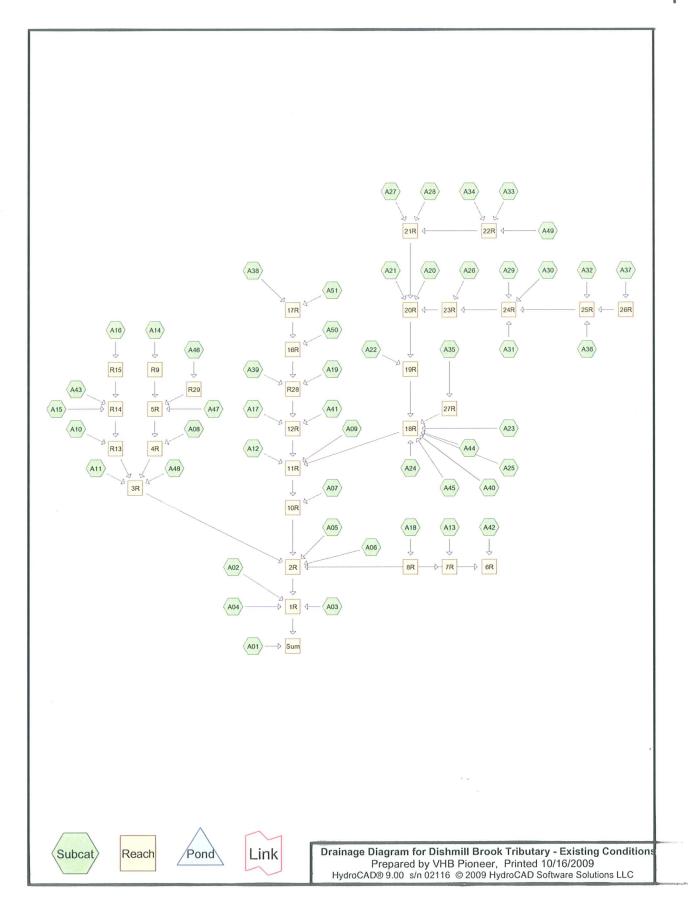
Class

Small, High Gradient, B2-3

Sampler

Cathy Szal, Pioneer Environmental Associates, LLC

APPLICATION OF STATE OF VERMONT BIOCRITERIA (2/10/03)


				Metric Scor	•			
Metric	Value		Based	on ANR Th	resholds fo	or SHG		
Metric	Value	Class	B2-3	Clas	s B1	Clas	s A	
		Threshold	Outcome	Threshold	Outcome	Threshold	Outcome	J
Density	370.0	<u>≥</u> 300	Pass	<u>≥</u> 400	+	<u>≥</u> 500	+	A should be fail
Richness	36.5	<u>≥</u> 27	Pass	<u>≥</u> 31	Pass	<u>≥</u> 35	Pass	
EPT	24	<u>≥</u> 16	Pass	<u>≥</u> 19	Pass	<u>≥</u> 21	Pass	
PMA-O	67.7	<u>≥</u> 45	Pass	<u>≥</u> 55	Pass	<u>≥</u> 65	[+	
ві	2.98	<u>≤</u> 4.50	Pass	<u>≤</u> 3.50	Pass	<u>≤</u> 3.00	+	
%Oligo	1.0	<u>≤</u> 12	Pass	<u>≤</u> 5	Pass	<u>≤</u> 2	Pass	
EPT/EPT+C	0.96	<u>≥</u> 0.45	Pass	<u>≥</u> 0.55	Pass	<u>≥</u> 0.65	Pass	
PPCS-F	0.52	<u>≥</u> 0.40	Pass	<u>≥</u> 0.45	Pass	<u>≥</u> 0.50	[+	
Outcome								
Metrics not in compliance with Class B2-3 thresholds								

Outcome Guidelines

- 1) Aquatic Life Use is "supported" when: a) five or more metrics are scored "pass" and no metrics are below the threshold value (I-).
- 2) Aquatic Life Use is "not supported" when one or more metrics are scored "failed".
- 3) In situations where neither items 1 or 2 are met, DEC will make an "indeterminate" finding and require further assessment. "Indeterminate" findings may be qualified by a plus or minus designation, indicating a tendency toward "support" or "nonsupport" status.

Scoring Guidelines - Wadeable Stream Category SHG

								EPT/	
WQ Class	Score	Density	Richness	EPT	PMA-O	BI	% Oligo	EPT+C	PPCS-F
A-1	Full Support	<u>≥</u> 605	≥36	>22	≥70	<u>≤</u> 2.70	<u><</u> 1	≥0.67	<u>≥</u> 0.55
	Threshold	<u>≥</u> 500	≥35	<u>≥</u> 21	≥65	<u>≤</u> 3	<u>≤</u> 2	<u>≥</u> 0.65	<u>≥</u> 0.5
	Non-Support	<u>≤</u> 450	<u>≤</u> 34	<u>≤</u> 20	<60	<u>≥</u> 3.30	<u>≥</u> 3	<u>≤</u> 0.63	<u>≤</u> 0.45
В1	Full Support	<u>≥</u> 450	≥32	<u>≥</u> 20	≥60	<u>≤</u> 3.35	<u>≤</u> 3.5	<u>≥</u> 0.57	<u>≥</u> 0.50
	Threshold	≥400	<u>≥</u> 31	<u>≥</u> 19	≥55	<u>≤</u> 3.5	<u>≤</u> 5	<u>≥</u> 0.55	<u>≥</u> 0.45
	Non-Support	<u>≤</u> 350	<u>≤</u> 30	<u>≤</u> 18	<u>≤</u> 50	<u>≥</u> 3.65	<u>≥</u> 6.5	<u>≤</u> 0.53	<u>≤</u> 0.40
B2-3	Full Support	<u>≥</u> 350	≥28	<u>≥</u> 17	≥50	<u>≤</u> 4.35	<u>≤</u> 9.5	<u>≥</u> 0.47	<u>≥</u> 0.45
	Threshold	≥300	<u>≥</u> 27	<u>≥</u> 16	<u>≥</u> 45	<u>≤</u> 4.5	<u>≤</u> 12	<u>≥</u> 0.45	<u>≥</u> 0.4
	Non-Support	<u>≤</u> 250	<u>≤</u> 26	<u>≤</u> 15	<u>≤</u> 40	<u>≥</u> 4.65	<u>≥</u> 14.5	<u>≤</u> 0.43	<u>≤</u> 0.35

Dishmill Brook Tributary - Existing Conditions

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer
HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 2

Summary for Subcatchment A01:

Runoff

6.02 cfs @ 12.17 hrs, Volume=

0.451 af, Depth> 2.37"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

Area	(ac) C	N Des	cription		*
1.	830	70 Woo	ds, Good,	HSG C	
0.	240	74 >75°	% Grass co	over, Good,	, HSG C
0.	170		ed parking		
0.	040	77 Woo	ds, Good,	HSG D	
2.	280	73 Weig	ghted Aver	age	
2.	110	92.5	4% Pervio	us Area	
0.	170	7.46	% Impervi	ous Area	
_					
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
21.7	150	0.0660	0.12		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.30"
1.0	95	0.1050	1.62		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.3	340	0.0880	16.26	536.52	Trap/Vee/Rect Channel Flow,
					Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'
					n= 0.040 Mountain streams
23.0	585	Total			

Summary for Subcatchment A02:

Runoff

1.92 cfs @ 12.16 hrs, Volume=

0.145 af, Depth> 2.81"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

Area	(ac)	CN	Description
0	.430	70	Woods, Good, HSG C
0	.010	74	>75% Grass cover, Good, HSG C
0	.030	98	Paved parking & roofs
0	.150	98	Paved parking & roofs
0	.620	78	Weighted Average
0	.440		70.97% Pervious Area
0	.180		29.03% Impervious Area

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 3

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	21.7	150	0.0660	0.12		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.30"
	1.5	80	0.1250	0.88		Shallow Concentrated Flow,
						Forest w/Heavy Litter Kv= 2.5 fps
	0.1	70	0.0430	11.36	375.04	Trap/Vee/Rect Channel Flow,
						Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'
_						n= 0.040 Mountain streams
	23.3	300	Total			

Summary for Subcatchment A03:

Runoff

3.35 cfs @ 12.45 hrs, Volume=

0.408 af, Depth> 3.45"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

Area	(ac) C	N Des	cription		
0.	200	70 Woo	ds, Good,	HSG C	
0.	.550	74 >75°	% Grass co	over, Good	, HSG C
0.	.630	98 Pave	ed parking	& roofs	
0.	.040	94 Urba	n commer	cial, 85% ir	mp, HSG C
1.	420	35 Weig	ghted Aver	age	
0.	756	53.2	4% Pervio	us Area	
0.	664	46.7	6% Imperv	rious Area	
	m				
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
37.8	150	0.0660	0.07		Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 2.30"
9.6	690	0.0580	1.20		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
47.4	840	Total			

Summary for Subcatchment A04:

Runoff

3.87 cfs @ 12.34 hrs, Volume=

0.396 af, Depth> 2.19"

Area (ac)	CN	Description			
1.760	70	Woods, Good, HSG C			
0.370	74	75% Grass cover, Good, HSG C			
0.020	94	Urban commercial, 85% imp, HSG C			
0.020	98	Paved parking & roofs			
2.170	71	Weighted Average			
2.133		98.29% Pervious Area			
0.037		1.71% Impervious Area			

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 4

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
34.6	150	0.0825	0.07		Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 2.30"
1.9	105	0.1430	0.95		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
0.6	450	0.0560	12.97	428.00	Trap/Vee/Rect Channel Flow,
					Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'
					n= 0.040 Mountain streams
37.1	705	Total			

Summary for Subcatchment A05:

Runoff 16.23 cfs @ 12.07 hrs, Volume= 0.966 af, Depth> 2.64"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

_	Area	(ac)	CN [Desc	cription				
	1.680 70 Woods, Good, HSG C								
	1.	570	74 >	>75%	6 Grass co	over, Good	, HSG C		
	0.	570	80 1	1/2 a	cre lots, 2	5% imp, H	SG C		
	0.	050	98 F	Pave	ed parking	& roofs			
	0.	520	98 F	Pave	ed parking	& roofs			
	4.	390	76 \	Weig	hted Aver	age			
	3.	678	3	33.7	7% Pervio	us Area			
	0.	713	1	16.2	3% Imperv	ious Area			
	Tc	Length	Slo	ре	Velocity	Capacity	Description		
	(min)	(feet)) (ft	t/ft)	(ft/sec)	(cfs)			
	10.9	150	0.13	330	0.23		Sheet Flow,		
							Grass: Dense n= 0.240 P2= 2.30"		
	1.1	160	0.12	250	2.47		Shallow Concentrated Flow,		
							Short Grass Pasture Kv= 7.0 fps		
	2.9	590	0.05	500	3.35		Shallow Concentrated Flow,		
							Grassed Waterway Kv= 15.0 fps		
	14.9	900	Tota	al					

Summary for Subcatchment A06:

Runoff

5.02 cfs @ 12.08 hrs, Volume=

0.301 af, Depth> 2.38"

Type II 24-hr 100-Yr Rainfall=5.40"

Printed 10/16/2009

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 5

	Area	(ac) C	N Des	cription		
1.240 70 Woods, Good, HSG C						
	0	140 7			over, Good,	HSG C
				ed parking		, 11000
_						
	1.	520 7		ghted Aver		
	1.	380	90.7	9% Pervio	us Area	
	0.	140	9.21	% Impervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	200011511011
-			1	1	(013)	01 (5)
	13.2	150	0.0830	0.19		Sheet Flow,
						Grass: Dense n= 0.240 P2= 2.30"
	1.8	240	0.1040	2.26		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.2	195	0.0770	15.21	501.87	Trap/Vee/Rect Channel Flow,
	5.2	100	0.0110	10.21	001.01	Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'
_			200-11			n= 0.040 Mountain streams
	15.2	585	Total			

Summary for Subcatchment A07:

Runoff = 5.48 cfs @ 12.43 hrs, Volume=

0.628 af, Depth> 2.27"

Area	(ac) C	N Desc	cription		
2.	710	70 Woo	ds, Good,	HSG C	
0.	410	74 >759	% Grass co	over, Good,	, HSG C
0.	200 9	98 Pave	ed parking	& roofs	
3.	320	72 Weig	ghted Aver	age	
3.	120	93.9	8% Pervio	us Area	
0.	200	6.02	% Impervi	ous Area	
_					
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
37.6	150	0.0670	0.07		Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 2.30"
5.7	260	0.0910	0.75		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
0.6	550	0.0910	16.53	545.59	Trap/Vee/Rect Channel Flow,
					Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'
7					n= 0.040 Mountain streams
43.9	960	Total			

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 6

Summary for Subcatchment A08:

Runoff

5.15 cfs @ 11.99 hrs, Volume=

0.266 af, Depth> 4.10"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

	Area	(ac) C	N Desc	cription					
	0.030 70 Woods, Good, HSG C								
	0.	250 8	33 1/4 a	cre lots, 3	8% imp, H	SG C			
	0.	060 7			cover, Fair				
	0.	440	98 Pave	ed parking	& roofs				
	0.	780 9	1 Weid	hted Aver	age				
	0.	245		, 1% Pervio	0				
	0.	535	68.5	9% Imperv	vious Area				
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·			
	5.7	95	0.1050	0.28		Sheet Flow,			
						Grass: Short n= 0.150 P2= 2.30"			
	8.0	55	0.0250	1.13		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 2.30"			
	1.6	200	0.0200	2.12		Shallow Concentrated Flow,			
						Grassed Waterway Kv= 15.0 fps			
_	8.1	350	Total						

Summary for Subcatchment A09:

Runoff

28.21 cfs @ 12.44 hrs, Volume=

3.276 af, Depth> 2.35"

Area	(ac) C	N Desc	cription				
10.	10.610 70 Woods, Good, HSG C						
3.	.910	74 >759	% Grass co	over, Good,	, HSG C		
0.	.890	8 Pave	ed parking	& roofs			
1.	.310 8	30 1/2 a	acre lots, 2	5% imp, H	SG C		
16.	720	73 Weig	ghted Aver	age			
15.	502	0 =	2% Pervio				
1.	.218	7.28	% Impervi	ous Area			
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
37.4	150	0.0680	0.07		Sheet Flow,		
					Woods: Dense underbrush n= 0.800 P2= 2.30"		
5.9	330	0.1380	0.93		Shallow Concentrated Flow,		
					Forest w/Heavy Litter Kv= 2.5 fps		
1.6	1,540	0.0840	15.88	524.19	Trap/Vee/Rect Channel Flow,		
					Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'		
					n= 0.040 Mountain streams		

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 7

44.9 2,020 Total

Summary for Subcatchment A10:

Runoff

6.21 cfs @ 12.14 hrs, Volume=

0.445 af, Depth> 2.81"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

	Area	(ac) C	N Desc	cription		
	0.	860	70 Woo	ds, Good,	HSG C	
	0.	580	74 >759	% Grass co	over, Good	, HSG C
_	0.	460 9	98 Pave	ed parking	& roofs	
	1.	900	78 Weig	ghted Aver	age	
		440		9% Pervio		
	0.	460	24.2	1% Imperv	ious Area	
	-		01		0 ''	D
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	18.4	150	0.1000	0.14		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.30"
	2.2	205	0.1000	1.58		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	0.6	510	0.0690	14.40	475.08	Trap/Vee/Rect Channel Flow,
						Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'
						n= 0.040 Mountain streams
	21.2	865	Total			

Summary for Subcatchment A11:

Runoff

14.90 cfs @ 12.32 hrs, Volume=

1.483 af, Depth> 2.28"

Are	a (ac)	CN	Description				
	6.770	70	Woods, Good, HSG C				
	0.530	74	75% Grass cover, Good, HSG C				
	0.040	79	50-75% Grass cover, Fair, HSG C				
	0.480	98	Paved parking & roofs				
	7.820	72	Weighted Average				
	7.340		93.86% Pervious Area				
	0.480		6.14% Impervious Area				

Type II 24-hr 100-Yr Rainfall=5.40"

Prepared by VHB Pioneer

Printed 10/16/2009

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 8

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	32.0	150	0.1000	0.08		Sheet Flow,
						Woods: Dense underbrush n= 0.800 P2= 2.30"
	2.7	170	0.1750	1.05		Shallow Concentrated Flow,
						Forest w/Heavy Litter Kv= 2.5 fps
	1.1	1,115	0.0990	17.24	569.07	Trap/Vee/Rect Channel Flow,
						Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'
_						n= 0.040 Mountain streams
	35.8	1,435	Total			

Summary for Subcatchment A12:

Runoff

7.56 cfs @ 12.20 hrs, Volume=

0.611 af, Depth> 2.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

	Area	(ac) C	N Desc	cription		
	2.	720 7	70 Woo	ds, Good,	HSG C	
	0.	250 7	74 >759	% Grass co	over, Good,	, HSG C
_	0.	240 9	98 Pave	ed parking	& roofs	
	3.	210 7	72 Weig	ghted Aver	age	
		970	0 = 1 0	2% Pervio		
	0.	240	7.48	% Impervi	ous Area	
	т.	1	Class	Valasitu	Canacitu	Description
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	(min)				(015)	Chast Flour
	22.8	150	0.2330	0.11		Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 2.30"
	2.3	120	0.1250	0.88		Shallow Concentrated Flow,
	2.0	120	0.1230	0.00		Forest w/Heavy Litter Kv= 2.5 fps
	0.9	780	0.0770	15.21	501.87	Trap/Vee/Rect Channel Flow,
	3.0		5.5116		221101	Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'
						n= 0.040 Mountain streams
	26.0	1.050	Total			

Summary for Subcatchment A13:

Runoff

8.13 cfs @ 12.05 hrs, Volume=

0.493 af, Depth> 3.89"

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 9

Area	(ac) C	N Des	cription				
0.	320	94 Urba	an commer	cial, 85% ir	mp, HSG C		
0.	010	74 > 75°	% Grass co	over, Good	, ĤSG C		
0.	520	98 Pave	ed parking	& roofs			
0.	0.020 70 Woods, Good, HSG C						
0.	270	79 50-7	5% Grass	cover, Fair	HSG C		
0.	380 8	30 1/2 a	acre lots, 2	5% imp, H	SG C		
1.	520	39 Weig	ghted Aver	age			
0.	633	41.6	4% Pervio	us Area			
0.	887	58.3	6% Imperv	ious Area			
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
11.1	150	0.0500	0.23		Sheet Flow,		
					Grass: Short n= 0.150 P2= 2.30"		
2.6	300	0.0750	1.92		Shallow Concentrated Flow,		
					Short Grass Pasture Kv= 7.0 fps		
13.7	450	Total					

Summary for Subcatchment A14:

Runoff = 34.51 cfs @ 12.22 hrs, Volume=

2.872 af, Depth> 2.54"

Area	(ac) C	N Desc	cription		
5.	.420	70 Woo	ds, Good,	HSG C	
4.	.200	74 >759	% Grass co	over, Good	, HSG C
1.	.140	80 1/2 a	acre lots, 2	5% imp, H	SG C
1.	.800	79 50-7	5% Grass	cover, Fair	, HSG C
1.	.010	98 Pave	ed parking	& roofs	
13.	.570	75 Weig	ghted Aver	age	
12.	.275	90.4	6% Pervio	us Area	
1.	.295	9.54	% Impervi	ous Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
16.4	150	0.1330	0.15		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.30"
10.6	1,265	0.1580	1.99		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.4	450	0.1110	18.26	602.57	Trap/Vee/Rect Channel Flow,
					Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'
					n= 0.040 Mountain streams
27.4	1,865	Total			

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 10

Summary for Subcatchment A15:

Runoff

19.06 cfs @ 12.17 hrs, Volume=

1.465 af, Depth> 2.63"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

Area	(ac) C	N Desc	cription					
2.	.250	70 Woo	ds, Good,	HSG C				
2.	.120			over, Good				
0.	.230			5% imp, H				
1.	.510			cover, Fair	, HSG C			
0.	.570	98 Pave	ed parking	& roofs				
6.	6.680 76 Weighted Average							
6.	.053	00.0	1% Pervio					
0.	.628	9.39	% Impervi	ous Area				
_								
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
21.5	150	0.0680	0.12		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 2.30"			
1.6	180	0.1390	1.86		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
0.9	1,100	0.1270	19.53	644.54	Trap/Vee/Rect Channel Flow,			
					Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'			
					n= 0.040 Mountain streams			
24.0	1,430	Total						

Summary for Subcatchment A16:

Runoff

5.82 cfs @ 12.12 hrs, Volume=

0.393 af, Depth> 2.64"

Area (ac)	CN	Description
0.280	70	Woods, Good, HSG C
1.310	74	>75% Grass cover, Good, HSG C
0.200	98	Paved parking & roofs
1.790	76	Weighted Average
1.590		88.83% Pervious Area
0.200		11.17% Impervious Area

Type II 24-hr 100-Yr Rainfall=5.40"

Prepared by VHB Pioneer

Printed 10/16/2009

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 11

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
15.6	150	0.1500	0.16		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.30"
3.5	380	0.1320	1.82		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.1	170	0.1320	19.91	657.10	Trap/Vee/Rect Channel Flow,
					Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'
					n= 0.040 Mountain streams
19.2	700	Total			

Summary for Subcatchment A17:

Runoff

3.99 cfs @ 12.15 hrs, Volume=

0.291 af, Depth> 2.81"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

	Area	(ac) C	N Des	cription		
	0.	520	70 Woo	ds, Good,	HSG C	
	0.	190	74 >75°	% Grass co	over, Good,	, HSG C
	0.	250	98 Pave	ed parking	& roofs	
	0.	240	30 1/2 a	acre lots, 2	5% imp, HS	SG C
_	0.	040	79 50-7	5% Grass	cover, Fair	, HSG C
	1.	240	78 Weig	ghted Aver	age	
	0.	930	75.0	0% Pervio	us Area	
	0.	310	25.0	0% Imperv	ious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	17.3	150	0.1170	0.14		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.30"
	4.5	450	0.1110	1.67		Shallow Concentrated Flow,
-						Woodland Kv= 5.0 fps
	21.8	600	Total			

Summary for Subcatchment A18:

Runoff

14.12 cfs @ 12.19 hrs, Volume=

1.133 af, Depth> 2.81"

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 12

	Area	(ac) C	CN Des	cription		
	0.	100	55 Woo	ds, Good,	HSG B	
	0.	020	94 Urba	an commer	cial, 85% in	mp, HSG C
	0.	180	70 Woo	ods, Good,	HSG C	
	0.	050	98 Pav	ed parking	& roofs	
	4.	490	79 50-7	5% Grass	cover, Fair	, HSG C
	4.	840	78 Wei	ghted Aver	age	
	4.	773	98.6	2% Pervio	us Area	
	0.	067	1.38	% Impervi	ous Area	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	13.1	150	0.2330	0.19		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.30"
	12.6	1,215	0.1030	1.60		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	25.7	1,365	Total			

Summary for Subcatchment A19:

Runoff =

6.39 cfs @ 12.15 hrs, Volume=

0.467 af, Depth> 3.00"

	Area	(ac) C	N Desc	cription				
	0.	200	70 Woo	ds, Good,	HSG C			
	0.	310	74 >759	% Grass co	over, Good	, HSG C		
	0.	230	98 Pave	ed parking	& roofs			
	0.	760	30 1/2 a	acre lots, 2	5% imp, H	SG C		
	0.	370	79 50-7	5% Grass	cover, Fair	HSG C		
	1.870 80 Weighted Average							
	1.	450		4% Pervio	0			
	0.	420	22.4	6% Imperv	ious Area			
	Tc	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	18.4	150	0.1000	0.14		Sheet Flow,		
						Woods: Light underbrush n= 0.400 P2= 2.30"		
	3.3	400	0.1630	2.02		Shallow Concentrated Flow,		
						Woodland Kv= 5.0 fps		
	0.1	180	0.1670	22.40	739.10	Trap/Vee/Rect Channel Flow,		
						Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'		
_						n= 0.040 Mountain streams		
	21.8	730	Total					

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 13

Summary for Subcatchment A20:

Runoff

1.18 cfs @ 12.02 hrs, Volume=

0.059 af, Depth> 2.30"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

	Area	(ac)	CN	Desc	ription		
	0.	040	61	>75%	6 Grass co	over, Good,	HSG B
	0.	010	98	Pave	ed parking	& roofs	
	0.	160	70	Woo	ds, Good,	HSG C	
	0.	090	77	Woo	ds, Good,	HSG D	
_	0.	010	80	>75%	√ Grass co	over, Good,	, HSG D
	0.	310	72	Weig	hted Aver	age	
	0.	300		96.7	7% Pervio	us Area	
	0.	010		3.23	% Impervi	ous Area	
	Tc	Length		lope	Velocity	Capacity	Description
_	(min)	(feet) ((ft/ft)	(ft/sec)	(cfs)	
	10.0	150	0.1	670	0.25		Sheet Flow,
							Grass: Dense n= 0.240 P2= 2.30"
	0.0	70	0.1	670	29.74	2,230.15	Trap/Vee/Rect Channel Flow,
							Bot.W=5.00' D=5.00' Z= 2.0 '/' Top.W=25.00'
_							n= 0.040 Mountain streams
	10.0	220) Tot	tal			

Summary for Subcatchment A21:

Runoff

6.15 cfs @ 12.02 hrs, Volume=

0.312 af, Depth> 2.22"

Area (ac)	CN	Description
0.920	61	>75% Grass cover, Good, HSG B
0.300	70	1/2 acre lots, 25% imp, HSG B
0.260	98	Paved parking & roofs
0.030	77	Woods, Good, HSG D
0.100	80	>75% Grass cover, Good, HSG D
0.020	85	1/2 acre lots, 25% imp, HSG D
0.060	98	Paved parking & roofs
1.690	71	Weighted Average
1.290		76.33% Pervious Area
0.400		23.67% Impervious Area

Type II 24-hr 100-Yr Rainfall=5.40"

Prepared by VHB Pioneer

Printed 10/16/2009 Page 14

	HydroCAD® 9.00	s/n 02116	© 2009 HydroCAD Software Solutions LLC
--	----------------	-----------	--

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
•	10.0	150	0.1670	0.25		Sheet Flow,
	0.2	270	0.1110	18.26	602.57	Grass: Dense n= 0.240 P2= 2.30" Trap/Vee/Rect Channel Flow, Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00' n= 0.040 Mountain streams
	10.2	420	Total		-	

Summary for Subcatchment A22:

Runoff

2.74 cfs @ 12.05 hrs, Volume=

0.151 af, Depth> 2.30"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

Area	(ac) (CN D	escription		
0.	090	61 >7	75% Grass of	over, Good	, HSG B
0.	030	55 W	oods, Good	, HSG B	
0.	560	70 1/	2 acre lots,	25% imp, H	SG B
0.	090	98 Pa	aved parking	& roofs	
0.	020	80 >7	75% Grass of	over, Good	, HSG D
0.	790	72 W	eighted Ave	rage	
0.	560	70	0.89% Pervi	ous Area	
0.	230	29	9.11% Imper	vious Area	
Tc	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/1	t) (ft/sec)	(cfs)	
12.2	150	0.100	0.20		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.30"
0.6	215	0.139	0 5.59		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
12.8	365	Total			

Summary for Subcatchment A23:

Runoff

10.51 cfs @ 12.11 hrs, Volume=

0.696 af, Depth> 2.64"

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 15

Area	(ac) C	N Des	cription				
0.	030	55 Woo	ds, Good,	HSG B			
0.	030			over, Good	, HSG B		
0.	090		ed parking				
0.	760		ds, Good,				
0.	170			over, Good			
				5% imp, H	SG C		
			ed parking				
			ds, Good,				
				over, Good	, HSG D		
0.	010	98 Pave	ed parking	& roofs			
			ghted Aver	0			
	985		94.16% Pervious Area				
0.	185	5.84	% Impervi	ous Area			
-		0.1			D		
Tc	Length	Slope	Velocity	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
16.4	150	0.1330	0.15		Sheet Flow,		
		0.4500			Woods: Light underbrush n= 0.400 P2= 2.30"		
1.4	160	0.1560	1.97		Shallow Concentrated Flow,		
0.7	075	0.0000	40.05	500 50	Woodland Kv= 5.0 fps		
0.7	675	0.0890	16.35	539.56	Trap/Vee/Rect Channel Flow,		
					Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'		
					n= 0.040 Mountain streams		
18.5	985	Total					

Summary for Subcatchment A24:

Runoff = 4.38 cfs @ 12.09 hrs, Volume=

0.270 af, Depth> 2.38"

Area (ac)	CN	Description
0.590	61	>75% Grass cover, Good, HSG B
0.090	98	Paved parking & roofs
0.030	70	Woods, Good, HSG C
0.460	74	>75% Grass cover, Good, HSG C
0.020	80	1/2 acre lots, 25% imp, HSG C
0.170	98	Paved parking & roofs
0.000	98	Paved parking & roofs
1.360	73	Weighted Average
1.095		80.51% Pervious Area
0.265		19.49% Impervious Area

Type II 24-hr 100-Yr Rainfall=5.40"

Prepared by VHB Pioneer

Printed 10/16/2009 Page 16

HydroCAD® 9.00	s/n 02116	© 2009 Hydro	CAD Software Solutions Ll	_C

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.2	150	0.1000	0.20	, , , , , , , , , , , , , , , , , , , ,	Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.30"
3.9	380	0.1050	1.62		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
16.1	530	Total			

Summary for Subcatchment A25:

Runoff

30.40 cfs @ 12.19 hrs, Volume=

2.371 af, Depth> 1.88"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

Area	(ac) C	N Desc	cription				
0.	.780	55 Woo	ds, Good,	HSG B			
7.	.650	31 >759	% Grass co	over, Good,	, HSG B		
0.	.050			5% imp, H	SG B		
0.	.360		ed parking				
3.	.080		ds, Good,				
2.				over, Good,	, HSG C		
			ed parking				
0.	130	30 1/2 a	acre lots, 2	5% imp, H	SG C		
15.	100		ghted Aver	•			
	415		95.46% Pervious Area				
0.	685	4.54	4.54% Impervious Area				
_					5		
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	4		
14.4	150	0.0666	0.17		Sheet Flow,		
					Grass: Dense n= 0.240 P2= 2.30"		
9.2	1,110	0.1620	2.01		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
0.4	390	0.1030	17.59	580.45	Trap/Vee/Rect Channel Flow,		
					Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'		
					n= 0.040 Mountain streams		
24.0	1,650	Total					

Summary for Subcatchment A26:

Runoff

2.29 cfs @ 12.11 hrs, Volume=

0.151 af, Depth> 1.51"

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer
HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 17

Area	(ac) C	N Desc	cription		
0.	.160 5	55 Woo	ds, Good,	HSG B	
0	.850			over, Good,	HSG B
				5% imp, H	
					00 B
			hted Aver	-	
	.152		4% Pervio		
0.	.047	3.96	% Impervi	ous Area	
_		-			·
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
16.4	150	0.1330	0.15		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.30"
1.0	110	0.1370	1.85		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.1	160	0.0940	22.31	1,673.17	Trap/Vee/Rect Channel Flow,
0.1	100	0.0040	22.01	1,070.17	Bot.W=5.00' D=5.00' Z= 2.0 '/' Top.W=25.00'
					n= 0.040 Mountain streams
					11- 0.040 Mountain streams
17.5	420	Total			

Summary for Subcatchment A27:

Runoff = 6.76 cfs @ 12.21 hrs, Volume=

0.559 af, Depth> 2.37"

Area	(ac)	CN D	escript	tion		
0.010 61 >75% Grass cover, 0						HSG B
2.	190	70 V	Voods,	Good,	HSG C	
0.	390	74 >	75% G	rass co	over, Good,	HSG C
0.	240	98 P	aved p	arking	& roofs	
2.	830	73 V	Veighte	d Aver	age	
2.	590	9	1.52%	Pervio	us Area	
0.	240	8	.48% lı	mpervi	ous Area	
Tc	Length	Slo		elocity	Capacity	Description
(min)	(feet)	(ft/	'ft) (f	t/sec)	(cfs)	
12.2	150	0.100	00	0.20		Sheet Flow,
						Grass: Dense n= 0.240 P2= 2.30"
12.7	700	0.130	60	0.92		Shallow Concentrated Flow,
						Forest w/Heavy Litter Kv= 2.5 fps
2.1	590	0.10	20	4.79		Shallow Concentrated Flow,
						Grassed Waterway Kv= 15.0 fps
27.0	1,440	Tota	l			

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 18

Summary for Subcatchment A28:

Runoff

9.30 cfs @ 12.02 hrs, Volume=

0.477 af, Depth> 2.47"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

Area	(ac)	CN Des	cription				
0	.170	55 Woo	ods, Good,	HSG B			
0	.280	61 > 75	% Grass c	over, Good	, HSG B		
0	.310			25% imp, H	SG B		
0	.340		ed parking				
0	.810		ods, Good,				
	.310			over, Good	, HSG C		
0	.100	98 Pav	ed parking	& roofs			
	.320		ghted Avei	•			
	.803		77.69% Pervious Area				
0	.517	22.3	22.31% Impervious Area				
То	Longth	Clana	Volonity	Conneity	Description		
Tc (min)	Length		Velocity (ft/sec)	Capacity (cfs)	Description		
(min)_	(feet			(CIS)	Chart Flour		
10.0	150	0.1670	0.25		Sheet Flow, Grass: Dense n= 0.240 P2= 2.30"		
0.2	30	0.1000	2.21				
0.2	30	0.1000	2.21		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps		
0.2	300	0.1000	23.01	1,725.74	Trap/Vee/Rect Channel Flow,		
0.2	300	0.1000	25.01	1,720.74	Bot.W=5.00' D=5.00' Z= 2.0 '/' Top.W=25.00'		
					n= 0.040 Mountain streams		
10.4	480	Total			11-0.040 Modificant of ouring		
10.4	400	Total					

Summary for Subcatchment A29:

Runoff

2.54 cfs @ 12.12 hrs, Volume=

0.173 af, Depth> 2.64"

Area (ac)	CN	Description
0.070	55	Woods, Good, HSG B
0.300	61	>75% Grass cover, Good, HSG B
0.130	70	1/2 acre lots, 25% imp, HSG B
0.290	98	Paved parking & roofs
0.790	76	Weighted Average
0.468		59.18% Pervious Area
0.323		40.82% Impervious Area

Type II 24-hr 100-Yr Rainfall=5.40"

Prepared by VHB Pioneer

Printed 10/16/2009

	12 1 1011001	
HydroCAD® 9.00	s/n 02116 © 2009	9 HydroCAD Software Solutions LLC

Page 19

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
19.1	150	0.0330	0.13		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.30"
0.5	150	0.1000	4.74		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
19.6	300	Total			

Summary for Subcatchment A30:

Runoff

12.00 cfs @ 11.98 hrs, Volume=

0.550 af, Depth> 2.92"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

	Aroo	(00)	CN Des	orintion		
_	Area	,		cription	1100 D	
				ods, Good,		1100 B
					over, Good,	, HSG B
				ed parking		
				ds, Good,		
					over, Good	, HSG C
_	0.	490	98 Pav	ed parking	& roofs	
	2.	260	79 Wei	ghted Aver	age	
		350	59.7	3% Pervio	us Area	
	0.	910	40.2	7% Imper	vious Area	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.2	80	0.0200	1.12		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.30"
	4.0	70	0.0400	0.29		Sheet Flow, SF - Ditch
						n= 0.080 P2= 2.30"
	1.4	320	0.0630	3.76		Shallow Concentrated Flow,
						Grassed Waterway Kv= 15.0 fps
	0.1	130	0.1150	24.68	1,850.65	
						Bot.W=5.00' D=5.00' Z= 2.0 '/' Top.W=25.00'
						n= 0.040 Mountain streams
	6.7	600	Total			

Summary for Subcatchment A31:

Runoff

6.69 cfs @ 12.08 hrs, Volume=

0.404 af, Depth> 2.29"

Type II 24-hr 100-Yr Rainfall=5.40"

Printed 10/16/2009

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 20

Area	(ac) C	N Desc	cription					
0.150 55 Woods, Good, HSG B								
0.790 61 >75% Grass cover, Good, HSG B								
0.240 98 Paved parking & roofs								
0.	.040	94 Urba	ın commei	cial, 85% in	mp, HSG C			
0.	440	70 Woo	ds, Good,	HSG C				
0.	270			over, Good	, HSG C			
0.	180	98 Pave	ed parking	& roofs				
2.	110	72 Weig	ghted Aver	age				
	656		8% Pervio					
0.	454	21.5	2% Imper	ious Area				
-		0.1			B			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
0.7	40	0.0200	0.97		Sheet Flow,			
400	4.40	0.0100			Smooth surfaces n= 0.011 P2= 2.30"			
13.8	110	0.0400	0.13		Sheet Flow,			
0.0	400	0.0000	0.07		Grass: Dense n= 0.240 P2= 2.30"			
0.6	100	0.0200	2.87		Shallow Concentrated Flow,			
0.0	500	0.4400	04.40	4 000 00	Paved Kv= 20.3 fps			
0.3	500	0.1100	24.13	1,809.98	Trap/Vee/Rect Channel Flow,			
					Bot.W=5.00' D=5.00' Z= 2.0 '/' Top.W=25.00'			
45.4	750	T			n= 0.040 Mountain streams			
15.4	750	Total						

Summary for Subcatchment A32:

Runoff = 5.42 cfs @ 11.94 hrs, Volume=

0.227 af, Depth> 3.20"

Aroo	(00)	N Door	orintion					
	Area (ac) CN Description							
0.030 61 >75% Grass cover, Good, HSG B								
0.010 98 Paved parking & roofs								
0.	.160	70 Woo	ds, Good,	HSG C				
0.	.340	74 > 759	% Grass co	over, Good	, HSG C			
0.	.310	98 Pave	ed roads w	/curbs & se	ewers			
0.	.850	32 Weig	ghted Aver	age				
0.	530		5% Pervio	0				
0.	.320	37.6	5% Impery	ious Area				
		0.10	o , op o					
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	2 333.15.113.1			
2.0	150	0.0200	1.26	· /	Sheet Flow,			
2.0	100	0.0200	1.20		Smooth surfaces n= 0.011 P2= 2.30"			
1.1	150	0.0200	2.28		Shallow Concentrated Flow,			
1.1	100	0.0200	2.20		Unpaved Kv= 16.1 fps			
0.4	320	0.0310	12.81	960.85	Trap/Vee/Rect Channel Flow,			
0.4	320	0.0310	12.01	900.00				
					Bot.W=5.00' D=5.00' Z= 2.0 '/' Top.W=25.00'			
					n= 0.040 Mountain streams			

Type II 24-hr 100-Yr Rainfall=5.40"

Prepared by VHB Pioneer

Printed 10/16/2009

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 21

3.5 620 Total

Summary for Subcatchment A33:

Runoff = 3.71 cfs @ 12.03 hrs, Volume=

0.194 af, Depth> 2.22"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

Aron	(00)	N Door	orintion				
Area			cription				
0.	.284		ds, Good,				
0.	258	, HSG B					
0.153 98 Paved parking & roofs							
0.204 70 Woods, Good, HSG C							
0.	050	74 > 759	% Grass co	over, Good	, HSG C		
0.	104		ed parking				
1	053		ghted Aver		3		
	796	tana como como como como como como como com	9% Pervio	-			
	257	1000		ious Area			
0.	201	24.4	1 70 IIIIperv	nous Area			
Tc	Length	Slope	Velocity	Capacity	Description		
		a s table	,		Description		
(min)_	(feet)	(ft/ft)	(ft/sec)	(cfs)			
10.0	150	0.1660	0.25		Sheet Flow,		
					Grass: Dense n= 0.240 P2= 2.30"		
1.1	150	0.1000	2.21		Shallow Concentrated Flow,		
					Short Grass Pasture Kv= 7.0 fps		
0.1	180	0.1110	24.24	1,818.18	Trap/Vee/Rect Channel Flow,		
					Bot.W=5.00' D=5.00' Z= 2.0 '/' Top.W=25.00'		
					n= 0.040 Mountain streams		
11.2	480	Total					
11.2	480	Total			n= 0.040 Mountain streams		

Summary for Subcatchment A34:

Runoff = 50.00 cfs @ 12.33 hrs, Volume=

5.051 af, Depth> 2.19"

Area (ac)	CN	Description		
0.020	55	Woods, Good, HSG B		
0.030	>75% Grass cover, Good, HSG B			
0.020 94 Urban commercial, 85% imp, HSG C				
23.260 70 Woods, Good, HSG C				
1.880 74 >75% Grass cover, Good, HSG C				
2.090	79	50-75% Grass cover, Fair, HSG C		
0.340	98	Paved parking & roofs		
27.640	71	Weighted Average		
27.283		98.71% Pervious Area		
0.357		1.29% Impervious Area		

Type II 24-hr 100-Yr Rainfall=5.40"

Prepared by VHB Pioneer

Printed 10/16/2009

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 22

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
22.8	150	0.2330	0.11		Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 2.30"
12.6	1,010	0.2870	1.34		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
1.0	1,620	0.1480	27.99	2,099.46	Trap/Vee/Rect Channel Flow,
					Bot.W=5.00' D=5.00' Z= 2.0 '/' Top.W=25.00'
					n= 0.040 Mountain streams
36.4	2.780	Total			

Summary for Subcatchment A35:

Runoff

9.73 cfs @ 12.05 hrs, Volume=

0.559 af, Depth> 3.19"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

	A ====	(00)	N Dee	ariation							
_	Area	(ac) C									
	0.030 55 Woods, Good, HSG B										
0.740 61 >75% Grass cover, Good, HSG B											
	0	900		ed parking	TO SECURE OF THE PART OF THE PART						
					cover, Fair	HSG B					
_	0.	340	92 Urba	an commer	ciai, 65% ii	mp, HSG B					
	2.	100	32 Wei	ghted Aver	age						
	0.	911	43.3	8% Pervio	us Area						
	1.	189	56.6	2% Imperv	ious Area						
	-	1.5									
	Tc	Length	Slope	Velocity	Capacity	Description					
		(feet)	(ft/ft)	(ft/sec)	(cfs)	Description					
-	(min)		3		(615)						
	12.2	150	0.1000	0.20		Sheet Flow,					
						Grass: Dense n= 0.240 P2= 2.30"					
	1.1	190	0.0200	2.87		Shallow Concentrated Flow,					
						Paved Kv= 20.3 fps					
-	40.0	240	T-4-1			1 4104 111 20.0 190					
	13.3	340	Total								

Summary for Subcatchment A36:

Runoff

179.70 cfs @ 12.47 hrs, Volume=

21.838 af, Depth> 2.43"

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 23

Area	Area (ac) CN Description							
0.010 92 Urban commercial, 85% imp, HSG B								
0.020 55 Woods, Good, HSG B								
0.	600	39 50-7	5% Grass	cover, Fair	, HSG B			
0.	050	98 Pave	ed parking	& roofs				
0.	070	94 Urba	n commer	cial, 85% in	mp, HSG C			
66.	100	70 Woo	ds, Good,	HSG C				
1.	470	74 >759	% Grass co	over, Good	, HSG C			
27.	840	79 50-7	5% Grass	cover, Fair	, HSG C			
2.	460	98 Pave	ed parking	& roofs				
0.	210	95 Urba	n commer	cial, 85% in	mp, HSG D			
7.	380	77 Woo	ds, Good,	HSG D				
0.	920	34 50-7	5% Grass	cover, Fair	, HSG D			
0.	570	98 Pave	ed parking	& roofs				
107.	700	74 Weig	ghted Aver	age				
104.	373	96.9	1% Pervio	us Area				
3.	327	3.09	% Impervi	ous Area				
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
28.6	150	0.1330	0.09		Sheet Flow,			
					Woods: Dense underbrush n= 0.800 P2= 2.30"			
18.0	2,800	0.2680	2.59		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
1.4	3,010	0.2330	35.12	2,634.23	Trap/Vee/Rect Channel Flow,			
					Bot.W=5.00' D=5.00' Z= 2.0 '/' Top.W=25.00'			
					n= 0.040 Mountain streams			
48.0	5,960	Total						

Summary for Subcatchment A37:

Runoff = 31.40 cfs @ 12.18 hrs, Volume= 2.407 af, Depth> 2.20"

Area (ac)	Description				
0.040	98	Paved parking & roofs			
11.860 70 Woods, Good, HSG C					
0.480 74 >75% Grass cover, Good, HSG C					
0.190	79	50-75% Grass cover, Fair, HSG C			
0.530	98	Paved parking & roofs			
13.100	71	Weighted Average			
12.530		95.65% Pervious Area			
0.570		4.35% Impervious Area			

Type II 24-hr 100-Yr Rainfall=5.40"

Prepared by VHB Pioneer

Printed 10/16/2009

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 24

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
19.8	150	0.3330	0.13		Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 2.30"
2.6	210	0.2860	1.34		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
1.3	2,480	0.2060	33.03	2,476.91	Trap/Vee/Rect Channel Flow,
					Bot.W=5.00' D=5.00' Z= 2.0 '/' Top.W=25.00'
					n= 0.040 Mountain streams
23.7	2.840	Total			

Summary for Subcatchment A38:

Runoff

99.09 cfs @ 12.40 hrs, Volume=

11.044 af, Depth> 2.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

	Area	(ac) C	N Desc	cription		
	0.	020	94 Urba	an commer	cial, 85% ir	mp, HSG C
	28.	580	70 Woo	ds, Good,	HSG C	• 5
	0.	020	, HSG C			
	20.	550	79 50-7	5% Grass	cover, Fair	, HSG C
	0.	080	98 Pave	ed parking	& roofs	
	3.	470	77 Woo	ds, Good,	HSG D	
	1.	620 8	34 50-7	5% Grass	cover, Fair	, HSG D
	54.	340	74 Weig	ghted Aver	age	
	54.	243	99.8	2% Pervio	us Area	
	0.	097	0.18	% Impervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	24.3	150	0.2000	0.10		Sheet Flow,
						Woods: Dense underbrush n= 0.800 P2= 2.30"
	16.9	2,820	0.3100	2.78		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	1.1	1,780	0.2580	27.84	918.66	Trap/Vee/Rect Channel Flow,
						Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'
_						n= 0.040 Mountain streams
	42.3	4.750	Total			

Summary for Subcatchment A39:

Runoff

27.65 cfs @ 12.26 hrs, Volume=

2.486 af, Depth> 2.28"

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer
HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 25

	Area	(ac) C	N Des	cription			
10.170 70 Woods, Good, HSG C							
0.050 98 Paved parking & roofs							
0.380 80 1/2 acre lots, 25% imp, HSG C							
	2.	480	79 50-7	5% Grass	cover, Fair	, HSG C	
	13.	080	72 Weig	ghted Aver	age		
	12.	935	98.8	9% Pervio	us Area		
0.145 1.11% Impervious Area							
	Тс	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	24.3	150	0.2000	0.10		Sheet Flow,	
						Woods: Dense underbrush n= 0.800 P2= 2.30"	
	5.2	340	0.1910	1.09		Shallow Concentrated Flow,	
						Forest w/Heavy Litter Kv= 2.5 fps	
	1.2	1,450	0.1380	20.36	671.87	Trap/Vee/Rect Channel Flow,	
						Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'	
_						n= 0.040 Mountain streams	
	30.7	1.940	Total				

Summary for Subcatchment A40:

Runoff = 43.10 cfs @ 12.10 hrs, Volume=

2.727 af, Depth> 2.29"

Area (ac)	CN	Description
0.050	92	Urban commercial, 85% imp, HSG B
0.540	55	Woods, Good, HSG B
1.390	61	>75% Grass cover, Good, HSG B
0.280	70	1/2 acre lots, 25% imp, HSG B
0.010	69	50-75% Grass cover, Fair, HSG B
0.320	98	Paved parking & roofs
0.040	94	Urban commercial, 85% imp, HSG C
6.510	70	Woods, Good, HSG C
2.830	74	>75% Grass cover, Good, HSG C
0.340	98	Paved parking & roofs
1.290	80	1/2 acre lots, 25% imp, HSG C
0.670	79	50-75% Grass cover, Fair, HSG C
14.270	72	Weighted Average
13.141		92.09% Pervious Area
1.129		7.91% Impervious Area

Type II 24-hr 100-Yr Rainfall=5.40"

Prepared by VHB Pioneer

Printed 10/16/2009

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 26

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	9.3	150	0.2000	0.27		Sheet Flow,
						Grass: Dense n= 0.240 P2= 2.30"
	6.9	730	0.1230	1.75		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	8.0	950	0.1160	18.67	615.99	Trap/Vee/Rect Channel Flow,
						Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'
_						n= 0.040 Mountain streams
	17.0	1,830	Total			

Summary for Subcatchment A41:

Runoff 70.70 cfs @ 12.31 hrs, Volume= 6.903 af, Depth> 2.45"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

Are	a (ac)	С	N Desc	cription		
2	1.190	7				
	, HSG C					
	0.970	9		ed parking		
	1.000	8			5% imp, H	
	8.010	7	9 50-7	5% Grass	cover, Fair	, HSG C
3	3.860	7		ghted Aver	•	
3	32.640			0% Pervio		
	1.220		3.60	% Impervi	ous Area	
			01		0 "	D. C. C. C.
, T		727	Slope	Velocity	Capacity	Description
(min			(ft/ft)	(ft/sec)	(cfs)	
21.	6 1	50	0.2670	0.12		Sheet Flow,
						Woods: Dense underbrush n= 0.800 P2= 2.30"
11.	1 7	20	0.1880	1.08		Shallow Concentrated Flow,
				10.70	050.40	Forest w/Heavy Litter Kv= 2.5 fps
2.	2 2,6	10	0.1300	19.76	652.10	Trap/Vee/Rect Channel Flow,
						Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'
						n= 0.040 Mountain streams
34.	9 3,4	80	Total			

Summary for Subcatchment A42:

Runoff

3.22 cfs @ 12.38 hrs, Volume=

0.366 af, Depth> 3.66"

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer
HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 27

	Area	(ac) C	N Des	cription			
0.080 94 Urban commercial, 85% imp, HSG C							
0.540 74 >75% Grass cover, Good, HSG C							
0.580 98 Paved parking & roofs							
-				ghted Aver			
			,	•	0		
		552		0% Pervio			
	0.	648	54.0	0% Imper\	ious Area		
	Tc	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	29.8	150	0.0300	0.08		Sheet Flow,	
						Woods: Light underbrush n= 0.400 P2= 2.30"	
	8.6	110	0.0500	0.21		Sheet Flow,	
						Grass: Short n= 0.150 P2= 2.30"	
	3.9	675	0.0370	2.89		Shallow Concentrated Flow,	
	2.0					Grassed Waterway Kv= 15.0 fps	
-	42.3	935	Total				

Summary for Subcatchment A43:

Runoff = 4.28 cfs @ 12.10 hrs, Volume=

0.278 af, Depth> 3.09"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

	Area	(ac)	CN	Desc	escription					
	0.	210	70	Woo	oods, Good, HSG C					
	0.	180	74	>75%	% Grass co	over, Good,	, HSG C			
	0.	460	80	1/2 a	acre lots, 2	5% imp, HS	SG C			
_	0.	230	98	Pave	ed parking	& roofs				
	1.	080	81	Weig	ghted Aver	age				
	0.	735		68.0	6% Pervio	us Area				
	0.	345		31.9	4% Imperv	vious Area				
	_									
	Tc	Length		Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	16.4	150	0.	1330	0.15		Sheet Flow,			
							Woods: Light underbrush n= 0.400 P2= 2.30"			
	1.1	300	0.	1000	4.74		Shallow Concentrated Flow,			
_							Grassed Waterway Kv= 15.0 fps			
	17.5	450) To	otal						

Summary for Subcatchment A44:

Runoff = 5.27 cfs @ 12.11 hrs, Volume=

0.349 af, Depth> 2.64"

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer
HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 28

	Area	(ac) C	N Desc	cription			
0.770 70 Woods, Good, HSG C							
0.510 74 >75% Grass cover, Good, HSG C							
0.270 98 Paved parking & roofs							
	0.	020			5% imp, H	SG C	
_	0.	020	77 Woo	ds, Good,	HSG D		
				ghted Aver	0		
	1.315 82.70% Pervious Area						
0.275 17.30% Impervious Area							
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	16.4	150	0.1330	0.15	,	Sheet Flow,	
	1.5	160	0.1250	1.77		Woods: Light underbrush n= 0.400 P2= 2.30" Shallow Concentrated Flow, Woodland Kv= 5.0 fps	
	0.6	580	0.0950	16.89	557.45	Trap/Vee/Rect Channel Flow, Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'	
_						n= 0.040 Mountain streams	
	18.5	890	Total				

Summary for Subcatchment A45:

Runoff = 13.30 cfs @ 12.07 hrs, Volume=

0.798 af, Depth> 3.00"

	Area	(ac) (CN Des	cription			
0.280 70 Woods, Good, HSG C							
	1.	360	74 >75	% Grass co	over, Good	, HSG C	
	0.	130	80 1/2	acre lots, 2	5% imp, H	SG C	
	0.	730	98 Pav	ed parking	& roofs		
	0.	630	77 Woo	ods, Good,	HSG D		
	0.	060	80 >75	% Grass co	over, Good	, HSG D	
	3.	190	80 Wei	ghted Aver	age		
	2.	428		0% Pervio			
	0.	763	23.9	00% Imperv	ious Area		
	Tc	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	10.9	150	0.1330	0.23		Sheet Flow,	
						Grass: Dense n= 0.240 P2= 2.30"	
	4.0	765	0.0460	3.22		Shallow Concentrated Flow,	
			2			Grassed Waterway Kv= 15.0 fps	
	14.9	915	Total				

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 29

Summary for Subcatchment A46:

Runoff

213.77 cfs @ 12.76 hrs, Volume=

33.734 af, Depth> 2.08"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

	Δ		NI D			
_	Area	(ac)	CN Des	cription		
	2.	.930	55 Woo	ds, Good,	HSG B	
	186.	970	70 Woo	ds, Good,	HSG C	
	0	040			cover, Fair	HSG C
				ds, Good,	and the second s	, 1.00 0
-						
	194.			ghted Aver		
	194.	.570	100.	00% Pervi	ous Area	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
_	27.2	150	0.1500	0.09		Sheet Flow,
	21.2	100	0.1000	0.00		Woods: Dense underbrush n= 0.800 P2= 2.30"
	20.4	2 470	0.2500	1 10		
	39.1	3,470	0.3500	1.48		Shallow Concentrated Flow,
						Forest w/Heavy Litter Kv= 2.5 fps
	2.1	3,100	0.2100	25.12	828.81	Trap/Vee/Rect Channel Flow,
						Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'
						n= 0.040 Mountain streams
	68.4	6.720	Total			

Summary for Subcatchment A47:

Runoff

150.61 cfs @ 12.54 hrs, Volume=

19.700 af, Depth> 2.18"

Area (ac)	CN	Description
90.740	70	Woods, Good, HSG C
0.030	74	>75% Grass cover, Good, HSG C
0.060	98	Paved parking & roofs
0.040	94	Urban commercial, 85% imp, HSG C
17.710	79	50-75% Grass cover, Fair, HSG C
108.580	71	Weighted Average
108.486		99.91% Pervious Area
0.094		0.09% Impervious Area

Type II 24-hr 100-Yr Rainfall=5.40"

Prepared by VHB Pioneer

Printed 10/16/2009

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 30

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
19.8	150	0.3330	0.13		Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 2.30"
29.3	2,040	0.2160	1.16		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
3.7	4,800	0.1580	21.79	718.91	Trap/Vee/Rect Channel Flow,
					Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'
					n= 0.040 Mountain streams
52.8	6.990	Total			

Summary for Subcatchment A48:

Runoff

13.23 cfs @ 12.08 hrs, Volume=

0.799 af, Depth> 2.46"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

Area	(ac) (N Des	cription				
2.510 70 Woods, Good, HSG C							
0.050 74 >75% Grass cover, Good, HSG C							
0.	870	79 50-7	5% Grass	cover, Fair	, HSG C		
0.	220		ed parking				
				al, 72% imp			
0.	230	80 1/2 a	acre lots, 2	5% imp, H	SG C		
3.	890	,	ghted Aver	_			
	605		8% Pervio				
0.	285	7.32	% Impervi	ous Area			
Тс	Longth	Slope	Velocity	Capacity	Description		
(min)	Length (feet)	(ft/ft)	(ft/sec)	(cfs)	Description		
10.9	150	0.1330	0.23	(010)	Sheet Flow,		
10.5	100	0.1000	0.20		Grass: Dense n= 0.240 P2= 2.30"		
3.8	340	0.0880	1.48		Shallow Concentrated Flow,		
0.0	0.0	0.0000			Woodland Kv= 5.0 fps		
0.7	640	0.0780	15.31	505.12	Trap/Vee/Rect Channel Flow,		
					Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'		
					n= 0.040 Mountain streams		
15.4	1,130	Total	·				

Summary for Subcatchment A49:

Runoff

3.93 cfs @ 12.05 hrs, Volume=

0.226 af, Depth> 2.91"

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer
HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 31

Area	(ac) C	N Des	cription			
0.	0.060 92 Urban commercial, 85% imp, HSG B					
0.010 55 Woods, Good, HSG B						
0.	0.130 61 >75% Grass cover, Good, HSG B					
0.	0.200 98 Paved parking & roofs					
0.	0.160 70 Woods, Good, HSG C					
0.	0.330 74 >75% Grass cover, Good, HSG C					
0.	0.040 98 Paved parking & roofs					
0.	930	79 Wei	ghted Aver	age		
0.	639	68.7	1% Pervio	us Area		
0.291 31.29% Impervious Area				∕ious Area		
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
12.2	150	0.1000	0.20		Sheet Flow,	
					Grass: Dense n= 0.240 P2= 2.30"	
1.2	140	0.0800	1.98		Shallow Concentrated Flow,	
-					Short Grass Pasture Kv= 7.0 fps	
0.2	240	0.1000	23.01	1,725.74		
					Bot.W=5.00' D=5.00' Z= 2.0 '/' Top.W=25.00'	
		coccar o a			n= 0.040 Mountain streams	
13.6	530	Total				

Summary for Subcatchment A50:

Runoff = 48.43 cfs @ 12.40 hrs, Volume=

5.389 af, Depth> 2.61"

Area (ac)	CN	Description
0.050	94	Urban commercial, 85% imp, HSG C
0.050	55	Woods, Good, HSG B
0.080	61	>75% Grass cover, Good, HSG B
1.410	69	50-75% Grass cover, Fair, HSG B
0.100	98	Paved parking & roofs
0.070	94	Urban commercial, 85% imp, HSG C
10.900	70	Woods, Good, HSG C
1.480	74	>75% Grass cover, Good, HSG C
0.770	98	Paved parking & roofs
8.880	79	50-75% Grass cover, Fair, HSG C
0.960	98	Paved parking & roofs
24.750	76	Weighted Average
22.818		92.19% Pervious Area
1.932		7.81% Impervious Area

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 32

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
24.3	150	0.2000	0.10		Sheet Flow,
					Woods: Dense underbrush n= 0.800 P2= 2.30"
17.4	1,450	0.3100	1.39		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
0.6	780	0.1670	22.40	739.10	Trap/Vee/Rect Channel Flow,
					Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'
					n= 0.040 Mountain streams
42.3	2.380	Total			

Summary for Subcatchment A51:

Runoff 40.54 cfs @ 12.43 hrs, Volume= 4.680 af, Depth> 2.70"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Yr Rainfall=5.40"

	Area	(ac) (CN Des	cription		3,
_	4.	930	70 Woo	ds, Good,	HSG C	
	0.	320	98 Pave	ed parking	& roofs	
	15.	560	79 50-7	5% Grass	cover, Fair	, HSG C
	20.810 77 Weighted Average					
20.490 98.46% Pervious Area						
0.320 1.54% Impervious Area						
	-		01	V7-13	0	Description
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)		(ft/sec)	(cfs)	
	20.6	150	0.3000	0.12		Sheet Flow,
						Woods: Dense underbrush n= 0.800 P2= 2.30"
	23.5	2,380	0.4540	1.68		Shallow Concentrated Flow,
						Forest w/Heavy Litter Kv= 2.5 fps
	0.6	700	0.1430	20.73	683.93	Trap/Vee/Rect Channel Flow,
						Bot.W=5.00' D=3.00' Z= 2.0 '/' Top.W=17.00'
_						n= 0.040 Mountain streams
	44.7	3.230	Total			

Summary for Reach 1R:

3.59% Impervious, Inflow Depth > 2.29" for 100-Yr event Inflow Area = 737.893 ac,

140.925 af Inflow 968.42 cfs @ 12.57 hrs, Volume=

967.37 cfs @ 12.58 hrs, Volume= 140.838 af, Atten= 0%, Lag= 0.8 min Outflow

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 19.69 fps, Min. Travel Time= 0.4 min Avg. Velocity = 7.87 fps, Avg. Travel Time= 1.0 min

Peak Storage= 23,593 cf @ 12.57 hrs, Average Depth at Peak Storage= 3.95' Bank-Full Depth= 3.00', Capacity at Bank-Full= 583.26 cfs

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 33

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 480.0' Slope= 0.1040 '/' Inlet Invert= 0.00', Outlet Invert= -49.92'

Summary for Reach 2R:

733.683 ac, 3.49% Impervious, Inflow Depth > 2.29" for 100-Yr event Inflow Area =

963.15 cfs @ 12.55 hrs, Volume= 961.85 cfs @ 12.57 hrs, Volume= 140.089 af Inflow =

139.975 af, Atten= 0%, Lag= 1.1 min Outflow

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 9.57 fps, Min. Travel Time= 0.6 min Avg. Velocity = 4.26 fps, Avg. Travel Time= 1.3 min

Peak Storage= 34,218 cf @ 12.56 hrs, Average Depth at Peak Storage= 6.99' Bank-Full Depth= 3.00', Capacity at Bank-Full= 255.78 cfs

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 340.0' Slope= 0.0200 '/' Inlet Invert= 0.00', Outlet Invert= -6.80'

Summary for Reach 3R:

Inflow Area = 340.660 ac, 1.27% Impervious, Inflow Depth > 2.16" for 100-Yr event

376.44 cfs @ 12.68 hrs, Volume= Inflow 61.205 af

61.163 af, Atten= 0%, Lag= 0.8 min 376.19 cfs @ 12.69 hrs, Volume= Outflow

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 15.53 fps, Min. Travel Time= 0.4 min Avg. Velocity = 6.06 fps, Avg. Travel Time= 1.1 min

Peak Storage= 9.697 cf @ 12.69 hrs, Average Depth at Peak Storage= 2.45' Bank-Full Depth= 3.00', Capacity at Bank-Full= 571.93 cfs

Dishmill Brook Tributary - Existing ConditionsPrepared by VHB Pioneer

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 34

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 400.0' Slope= 0.1000 '/' Inlet Invert= 0.00', Outlet Invert= -40.00'

Summary for Reach 4R:

Inflow Area = 317.500 ac, 0.61% Impervious, Inflow Depth > 2.13" for 100-Yr event

Inflow = 358.31 cfs @ 12.69 hrs, Volume= 56.407 af

Outflow = 358.03 cfs @ 12.71 hrs, Volume= 56.357 af, Atten= 0%, Lag= 1.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 14.44 fps, Min. Travel Time= 0.5 min Avg. Velocity = 5.54 fps, Avg. Travel Time= 1.4 min

Peak Storage= 11,665 cf @ 12.70 hrs, Average Depth at Peak Storage= 2.49' Bank-Full Depth= 3.00', Capacity at Bank-Full= 527.30 cfs

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 470.0' Slope= 0.0850 '/' Inlet Invert= 0.00', Outlet Invert= -39.95'

Summary for Reach 5R:

Inflow Area = 316.720 ac, 0.44% Impervious, Inflow Depth > 2.13" for 100-Yr event

Inflow = 358.43 cfs @ 12.67 hrs, Volume= 56.194 af

Outflow = 357.97 cfs @ 12.69 hrs, Volume= 56.141 af, Atten= 0%, Lag= 1.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 13.08 fps, Min. Travel Time= 0.6 min

Avg. Velocity = 6.24 fps, Avg. Travel Time= 1.2 min

Peak Storage= 12,600 cf @ 12.68 hrs, Average Depth at Peak Storage= 2.66' Bank-Full Depth= 3.00', Capacity at Bank-Full= 461.11 cfs

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 35

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 460.0' Slope= 0.0650 '/' Inlet Invert= 0.00', Outlet Invert= -29.90'

Summary for Reach 6R:

Inflow Area = 7.560 ac, 21.19% Impervious, Inflow Depth > 3.16" for 100-Yr event

Inflow = 21.48 cfs @ 12.17 hrs, Volume= 1.988 af

Outflow = 21.27 cfs @ 12.22 hrs, Volume= 1.983 af, Atten= 1%, Lag= 3.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 6.18 fps, Min. Travel Time= 1.6 min Avg. Velocity = 1.92 fps, Avg. Travel Time= 5.2 min

Peak Storage= 2,073 cf @ 12.19 hrs, Average Depth at Peak Storage= 0.73' Bank-Full Depth= 2.00', Capacity at Bank-Full= 124.81 cfs

4.00' x 2.00' deep channel, n= 0.030 Short grass Side Slope Z-value= 1.0 '/' Top Width= 8.00' Length= 600.0' Slope= 0.0330 '/' Inlet Invert= 0.00', Outlet Invert= -19.80'

Summary for Reach 7R:

Inflow Area = 6.360 ac, 15.00% Impervious, Inflow Depth > 3.07" for 100-Yr event

Inflow = 19.47 cfs @ 12.12 hrs, Volume= 1.625 af

Outflow = 19.29 cfs @ 12.15 hrs, Volume= 1.623 af, Atten= 1%, Lag= 1.6 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 7.28 fps, Min. Travel Time= 0.8 min Avg. Velocity = 2.14 fps, Avg. Travel Time= 2.6 min

Peak Storage= 905 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.58' Bank-Full Depth= 2.00', Capacity at Bank-Full= 166.88 cfs

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer
HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 36

M

4.00' x 2.00' deep channel, n= 0.030 Short grass Side Slope Z-value= 1.0 '/' Top Width= 8.00' Length= 340.0' Slope= 0.0590 '/' Inlet Invert= 0.00', Outlet Invert= -20.06'

Summary for Reach 8R:

Inflow Area = 4.840 ac, 1.38% Impervious, Inflow Depth > 2.81" for 100-Yr event

Inflow = 14.12 cfs @ 12.19 hrs, Volume= 1.133 af

Outflow = 14.08 cfs @ 12.20 hrs, Volume= 1.132 af, Atten= 0%, Lag= 0.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 12.15 fps, Min. Travel Time= 0.3 min Avg. Velocity = 4.70 fps, Avg. Travel Time= 0.7 min

Peak Storage= 233 cf @ 12.20 hrs, Average Depth at Peak Storage= 0.79' Bank-Full Depth= 2.00', Capacity at Bank-Full= 42.45 cfs

24.0" Round Pipe n= 0.012 Steel, smooth Length= 200.0' Slope= 0.0300 '/' Inlet Invert= 0.00', Outlet Invert= -6.00'

Summary for Reach 10R:

Inflow Area = 379.553 ac, 4.97% Impervious, Inflow Depth > 2.39" for 100-Yr event

Inflow = 595.78 cfs @ 12.50 hrs, Volume= 75.712 af

Outflow = 595.25 cfs @ 12.50 hrs, Volume= 75.677 af, Atten= 0%, Lag= 0.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity = 16.54 fps, Min. Travel Time = 0.3 min Avg. Velocity = 6.80 fps, Avg. Travel Time = 0.7 min

Peak Storage= 10,444 cf @ 12.50 hrs, Average Depth at Peak Storage= 3.18' Bank-Full Depth= 3.00', Capacity at Bank-Full= 530.39 cfs

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer

Dec. 27

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 37

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 290.0' Slope= 0.0860 '/' Inlet Invert= 0.00', Outlet Invert= -24.94'

Summary for Reach 11R:

Inflow Area = 376.233 ac, 4.96% Impervious, Inflow Depth > 2.40" for 100-Yr event

Inflow = 592.05 cfs @ 12.47 hrs, Volume= 75.189 af

Outflow = 590.44 cfs @ 12.50 hrs, Volume= 75.084 af, Atten= 0%, Lag= 1.7 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 13.66 fps, Min. Travel Time= 0.9 min Avg. Velocity = 5.68 fps, Avg. Travel Time= 2.2 min

Peak Storage= 32,473 cf @ 12.48 hrs, Average Depth at Peak Storage= 3.61' Bank-Full Depth= 3.00', Capacity at Bank-Full= 416.37 cfs

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 750.0' Slope= 0.0530 '/' Inlet Invert= 0.00', Outlet Invert= -39.75'

Summary for Reach 12R:

Inflow Area = 149.950 ac, 2.96% Impervious, Inflow Depth > 2.49" for 100-Yr event

Inflow = 269.54 cfs @ 12.43 hrs, Volume= 31.134 af

Outflow = 268.36 cfs @ 12.47 hrs, Volume= 31.068 af, Atten= 0%, Lag= 2.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 13.26 fps, Min. Travel Time= 1.3 min Avg. Velocity = 5.27 fps, Avg. Travel Time= 3.3 min

Peak Storage= 20,908 cf @ 12.45 hrs, Average Depth at Peak Storage= 2.17' Bank-Full Depth= 3.00', Capacity at Bank-Full= 521.06 cfs

Dishmill Brook Tributary - Existing ConditionsPrepared by VHB Pioneer

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 38

 $5.00' \times 3.00'$ deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 1,030.0' Slope= 0.0830 '/' Inlet Invert= 0.00', Outlet Invert= -85.49'

Summary for Reach 16R:

Inflow Area = 99.900 ac, 2.35% Impervious, Inflow Depth > 2.53" for 100-Yr event

Inflow = 187.08 cfs @ 12.43 hrs, Volume= 21.083 af

Outflow = 186.23 cfs @ 12.47 hrs, Volume= 21.037 af, Atten= 0%, Lag= 2.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 13.48 fps, Min. Travel Time= 1.3 min Avg. Velocity = 5.51 fps, Avg. Travel Time= 3.2 min

Peak Storage= 14,692 cf @ 12.45 hrs, Average Depth at Peak Storage= 1.66' Bank-Full Depth= 3.00', Capacity at Bank-Full= 610.66 cfs

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 1,060.0' Slope= 0.1140 '/' Inlet Invert= 0.00', Outlet Invert= -120.84'

Summary for Reach 17R:

Inflow Area = 75.150 ac, 0.55% Impervious, Inflow Depth > 2.51" for 100-Yr event

Inflow = 139.52 cfs @ 12.41 hrs, Volume= 15.724 af

Outflow = 138.99 cfs @ 12.44 hrs, Volume= 15.694 af, Atten= 0%, Lag= 1.9 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 13.19 fps, Min. Travel Time= 1.1 min Avg. Velocity = 5.27 fps, Avg. Travel Time= 2.8 min

Peak Storage= 9,405 cf @ 12.42 hrs, Average Depth at Peak Storage= 1.37' Bank-Full Depth= 3.00', Capacity at Bank-Full= 664.53 cfs

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 39

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 890.0' Slope= 0.1350 '/' Inlet Invert= 0.00', Outlet Invert= -120.15'

Summary for Reach 18R:

206.353 ac, 6.18% Impervious, Inflow Depth > 2.35" for 100-Yr event Inflow Area =

292.80 cfs @ 12.39 hrs, Volume= 291.77 cfs @ 12.47 hrs, Volume= 40.412 af Inflow =

40.233 af, Atten= 0%, Lag= 4.8 min Outflow

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 13.90 fps, Min. Travel Time= 2.8 min Avg. Velocity = 5.64 fps, Avg. Travel Time= 6.9 min

Peak Storage= 49,129 cf @ 12.43 hrs, Average Depth at Peak Storage= 2.22' Bank-Full Depth= 3.00', Capacity at Bank-Full= 539.56 cfs

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 2,340.0' Slope= 0.0890 '/' Inlet Invert= 0.00', Outlet Invert= -208.26'

Summary for Reach 19R:

Inflow Area = 165.573 ac, 4.98% Impervious, Inflow Depth > 2.37" for 100-Yr event

254.04 cfs @ 12.45 hrs, Volume= Inflow 32.681 af

253.57 cfs @ 12.47 hrs, Volume= 32.647 af, Atten= 0%, Lag= 1.1 min Outflow

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 14.23 fps, Min. Travel Time= 0.6 min Avg. Velocity = 5.58 fps, Avg. Travel Time= 1.6 min

Peak Storage= 9.819 cf @ 12.46 hrs, Average Depth at Peak Storage= 1.99' Bank-Full Depth= 3.00', Capacity at Bank-Full= 586.06 cfs

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer
HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 40

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 550.0' Slope= 0.1050 '/' Inlet Invert= 0.00', Outlet Invert= -57.75'

Summary for Reach 20R:

Inflow Area = 164.783 ac, 4.87% Impervious, Inflow Depth > 2.37" for 100-Yr event

Inflow = 253.82 cfs @ 12.44 hrs, Volume= 32.546 af

Outflow = 253.58 cfs @ 12.45 hrs, Volume= 32.530 af, Atten= 0%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 13.61 fps, Min. Travel Time= 0.3 min Avg. Velocity = 5.34 fps, Avg. Travel Time= 0.8 min

Peak Storage= 4,700 cf @ 12.44 hrs, Average Depth at Peak Storage= 2.05' Bank-Full Depth= 3.00', Capacity at Bank-Full= 551.60 cfs

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 252.0' Slope= 0.0930 '/' Inlet Invert= 0.00', Outlet Invert= -23.44'

Summary for Reach 21R:

Inflow Area = 34.773 ac, 4.78% Impervious, Inflow Depth > 2.24" for 100-Yr event

Inflow = 58.78 cfs @ 12.33 hrs, Volume= 6.498 af

Outflow = 58.68 cfs @ 12.34 hrs, Volume= 6.494 af, Atten= 0%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 9.97 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.67 fps, Avg. Travel Time= 0.9 min

Peak Storage= 1,179 cf @ 12.33 hrs, Average Depth at Peak Storage= 0.87' Bank-Full Depth= 3.00', Capacity at Bank-Full= 639.44 cfs

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 41

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 200.0' Slope= 0.1250 '/' Inlet Invert= 0.00', Outlet Invert= -25.00'

Summary for Reach 22R:

Inflow Area = 29.623 ac, 3.06% Impervious, Inflow Depth > 2.22" for 100-Yr event

Inflow = 51.77 cfs @ 12.32 hrs, Volume= 5.471 af

Outflow = 51.53 cfs @ 12.35 hrs, Volume= 5.462 af, Atten= 0%, Lag= 1.6 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 8.93 fps, Min. Travel Time= 0.9 min Avg. Velocity = 3.22 fps, Avg. Travel Time= 2.5 min

Peak Storage= 2,835 cf @ 12.33 hrs, Average Depth at Peak Storage= 0.86' Bank-Full Depth= 3.00', Capacity at Bank-Full= 577.62 cfs

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 490.0' Slope= 0.1020 '/' Inlet Invert= 0.00', Outlet Invert= -49.98'

Summary for Reach 23R:

Inflow Area = 128.010 ac, 4.65% Impervious, Inflow Depth > 2.41" for 100-Yr event

Inflow = 199.57 cfs @ 12.46 hrs, Volume= 25.703 af

Outflow = 199.18 cfs @ 12.48 hrs, Volume= 25.681 af, Atten= 0%, Lag= 0.9 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 13.81 fps, Min. Travel Time= 0.5 min Avg. Velocity = 5.35 fps, Avg. Travel Time= 1.3 min

Peak Storage= 6,212 cf @ 12.47 hrs, Average Depth at Peak Storage= 1.71' Bank-Full Depth= 3.00', Capacity at Bank-Full= 615.99 cfs

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer
HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 42

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 430.0' Slope= 0.1160 '/' Inlet Invert= 0.00', Outlet Invert= -49.88'

Summary for Reach 24R:

Inflow Area = 126.810 ac, 4.65% Impervious, Inflow Depth > 2.42" for 100-Yr event

Inflow = 199.16 cfs @ 12.45 hrs, Volume= 25.568 af

Outflow = 198.92 cfs @ 12.47 hrs, Volume= 25.551 af, Atten= 0%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 12.22 fps, Min. Travel Time= 0.4 min Avg. Velocity = 4.74 fps, Avg. Travel Time= 1.1 min

Peak Storage= 4,887 cf @ 12.46 hrs, Average Depth at Peak Storage= 1.87' Bank-Full Depth= 3.00', Capacity at Bank-Full= 521.06 cfs

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 300.0' Slope= 0.0830 '/' Inlet Invert= 0.00', Outlet Invert= -24.90'

Summary for Reach 25R:

Inflow Area = 121.650 ac, 3.47% Impervious, Inflow Depth > 2.41" for 100-Yr event

Inflow = 196.05 cfs @ 12.44 hrs, Volume= 24.466 af

Outflow = 195.74 cfs @ 12.46 hrs, Volume= 24.442 af, Atten= 0%, Lag= 1.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 13.48 fps, Min. Travel Time= 0.6 min Avg. Velocity = 5.13 fps, Avg. Travel Time= 1.6 min

Peak Storage= 7,270 cf @ 12.45 hrs, Average Depth at Peak Storage= 1.72' Bank-Full Depth= 3.00', Capacity at Bank-Full= 599.85 cfs

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer
HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 43

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 500.0' Slope= 0.1100 '/' Inlet Invert= 0.00', Outlet Invert= -55.00'

Summary for Reach 26R:

Inflow Area = 13.100 ac, 4.35% Impervious, Inflow Depth > 2.20" for 100-Yr event

Inflow = 31.40 cfs @ 12.18 hrs, Volume= 2.407 af

Outflow = 31.07 cfs @ 12.21 hrs, Volume= 2.402 af, Atten= 1%, Lag= 1.9 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 5.07 fps, Min. Travel Time= 1.0 min

Avg. Velocity = 1.83 fps, Avg. Travel Time= 2.8 min

Peak Storage= 1,917 cf @ 12.19 hrs, Average Depth at Peak Storage= 0.91' Bank-Full Depth= 3.00', Capacity at Bank-Full= 318.44 cfs

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 310.0' Slope= 0.0310 '/' Inlet Invert= 0.00', Outlet Invert= -9.61'

Summary for Reach 27R:

Inflow Area = 2.100 ac, 56.62% Impervious, Inflow Depth > 3.19" for 100-Yr event

Inflow = 9.73 cfs @ 12.05 hrs, Volume= 0.559 af

Outflow = 8.61 cfs @ 12.20 hrs, Volume= 0.553 af, Atten= 11%, Lag= 9.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 5.37 fps, Min. Travel Time= 5.6 min

Avg. Velocity = 1.62 fps, Avg. Travel Time= 18.5 min

Peak Storage= 2,910 cf @ 12.10 hrs, Average Depth at Peak Storage= 0.29' Bank-Full Depth= 3.00', Capacity at Bank-Full= 647.07 cfs

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 44

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 1.800.0' Slope= 0.1280 '/' Inlet Invert= 0.00', Outlet Invert= -230.40'

Summary for Reach R13:

Inflow Area =

11.450 ac, 14.26% Impervious, Inflow Depth > 2.70" for 100-Yr event

Inflow = 33.93 cfs @ 12.18 hrs, Volume=

2.576 af

Outflow

33.30 cfs @ 12.24 hrs, Volume=

2.566 af, Atten= 2%, Lag= 3.7 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 6.91 fps, Min. Travel Time= 2.1 min Avg. Velocity = 2.18 fps, Avg. Travel Time= 6.5 min

Peak Storage= 4,139 cf @ 12.21 hrs, Average Depth at Peak Storage= 0.75' Bank-Full Depth= 3.00', Capacity at Bank-Full= 481.92 cfs

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 850.0' Slope= 0.0710 '/' Inlet Invert= 0.00', Outlet Invert= -60.35'

Summary for Reach R14:

Inflow Area =

9.550 ac, 12.28% Impervious, Inflow Depth > 2.68" for 100-Yr event

Inflow

28.34 cfs @ 12.17 hrs, Volume=

2.134 af

28.00 cfs @ 12.19 hrs, Volume= 2.131 af. Atten= 1%, Lag= 1.5 min Outflow

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 7.00 fps, Min. Travel Time= 0.8 min Avg. Velocity = 2.19 fps, Avg. Travel Time= 2.6 min

Peak Storage= 1,389 cf @ 12.18 hrs, Average Depth at Peak Storage= 0.64' Bank-Full Depth= 3.00', Capacity at Bank-Full= 533.51 cfs

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer

HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 45

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 345.0' Slope= 0.0870 '/' Inlet Invert= 0.00', Outlet Invert= -30.02'

Summary for Reach R15:

Inflow Area =

1.790 ac, 11.17% Impervious, Inflow Depth > 2.64" for 100-Yr event

Inflow = 5.82 cfs @ 12.12 hrs, Volume=

0.393 af

Outflow

5.66 cfs @ 12.20 hrs, Volume=

0.391 af, Atten= 3%, Lag= 4.8 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.82 fps, Min. Travel Time= 2.8 min Avg. Velocity = 1.24 fps, Avg. Travel Time= 8.5 min

Peak Storage= 944 cf @ 12.15 hrs, Average Depth at Peak Storage= 0.27' Bank-Full Depth= 3.00', Capacity at Bank-Full= 481.95 cfs

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 635.0' Slope= 0.0710 '/' Inlet Invert= 0.00', Outlet Invert= -45.09'

Summary for Reach R28:

Inflow Area =

114.850 ac, 2.54% Impervious, Inflow Depth > 2.51" for 100-Yr event

Inflow Outflow 208.48 cfs @ 12.44 hrs, Volume=

207.49 cfs @ 12.48 hrs, Volume=

23.990 af 23.941 af, Atten= 0%, Lag= 2.2 min

Routing by Stor-Ind+Trans method. Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 13.89 fps, Min. Travel Time= 1.2 min Avg. Velocity = 5.40 fps, Avg. Travel Time= 3.2 min

Peak Storage= 15,597 cf @ 12.46 hrs. Average Depth at Peak Storage= 1.76' Bank-Full Depth= 3.00', Capacity at Bank-Full= 610.66 cfs

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer
HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 46

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 1,040.0' Slope= 0.1140 '/' Inlet Invert= 0.00'. Outlet Invert= -118.56'

Summary for Reach R29:

Inflow Area = 194.570 ac, 0.00% Impervious, Inflow Depth > 2.08" for 100-Yr event

Inflow = 213.77 cfs @ 12.76 hrs, Volume= 33.734 af

Outflow = 213.49 cfs @ 12.81 hrs, Volume= 33.631 af, Atten= 0%, Lag= 3.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 12.73 fps, Min. Travel Time= 1.8 min Avg. Velocity = 6.41 fps, Avg. Travel Time= 3.6 min

Peak Storage= 23,003 cf @ 12.77 hrs, Average Depth at Peak Storage= 1.91' Bank-Full Depth= 3.00', Capacity at Bank-Full= 536.52 cfs

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 1,370.0' Slope= 0.0880 '/' Inlet Invert= 0.00', Outlet Invert= -120.56'

Summary for Reach R9:

Inflow Area = 13.570 ac, 9.54% Impervious, Inflow Depth > 2.54" for 100-Yr event

Inflow = 34.51 cfs @ 12.22 hrs, Volume= 2.872 af

Outflow = 34.04 cfs @ 12.27 hrs, Volume= 2.863 af, Atten= 1%, Lag= 3.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 7.57 fps, Min. Travel Time= 1.7 min Avg. Velocity = 2.65 fps, Avg. Travel Time= 4.8 min

Peak Storage= 3,487 cf @ 12.24 hrs, Average Depth at Peak Storage= 0.71' Bank-Full Depth= 3.00', Capacity at Bank-Full= 545.59 cfs

Type II 24-hr 100-Yr Rainfall=5.40" Printed 10/16/2009

Prepared by VHB Pioneer
HydroCAD® 9.00 s/n 02116 © 2009 HydroCAD Software Solutions LLC

Page 47

5.00' x 3.00' deep channel, n= 0.040 Mountain streams Side Slope Z-value= 2.0 '/' Top Width= 17.00' Length= 770.0' Slope= 0.0910 '/' Inlet Invert= 0.00', Outlet Invert= -70.07'

Summary for Reach Sum:

Inflow Area = 740.173 ac, 3.60% Impervious, Inflow Depth > 2.29" for 100-Yr event

Inflow = 969.13 cfs @ 12.58 hrs, Volume= 141.288 af

Outflow = 969.13 cfs @ 12.58 hrs, Volume= 141.288 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs